一种模型的训练方法、数据处理方法及设备

    公开(公告)号:CN113011568B

    公开(公告)日:2024-06-21

    申请号:CN202110352634.3

    申请日:2021-03-31

    Abstract: 本申请实施例公开了一种模型的训练方法、数据处理方法及设备,可应用于人工智能领域中,具体可应用于计算机视觉领域,方法包括:首先为每个域(包括目标域和多个源域)的每个类别建立原型(即类别中心),再在每个域内基于计算出的原型建立一个关系矩阵(即相似度矩阵),之后根据每个域各自对应的相似度矩阵构建得到一个目标张量,通过相似度矩阵构建域之间的高阶关联,并将该高阶关联融合进目标损失函数,使得模型学习提取域无关的特征。该方法借助张量的低秩约束挖掘多个源域和目标域之间的高阶关联,增强了不同域上提取的特征的一致性,使得模型即使在没有见过的目标域上也有不错的性能提升,并且不会额外增加推理阶段的运行时间及计算开销。

    一种模型的训练方法、数据处理方法及设备

    公开(公告)号:CN113011568A

    公开(公告)日:2021-06-22

    申请号:CN202110352634.3

    申请日:2021-03-31

    Abstract: 本申请实施例公开了一种模型的训练方法、数据处理方法及设备,可应用于人工智能领域中,具体可应用于计算机视觉领域,方法包括:首先为每个域(包括目标域和多个源域)的每个类别建立原型(即类别中心),再在每个域内基于计算出的原型建立一个关系矩阵(即相似度矩阵),之后根据每个域各自对应的相似度矩阵构建得到一个目标张量,通过相似度矩阵构建域之间的高阶关联,并将该高阶关联融合进目标损失函数,使得模型学习提取域无关的特征。该方法借助张量的低秩约束挖掘多个源域和目标域之间的高阶关联,增强了不同域上提取的特征的一致性,使得模型即使在没有见过的目标域上也有不错的性能提升,并且不会额外增加推理阶段的运行时间及计算开销。

Patent Agency Ranking