-
公开(公告)号:CN108564119A
公开(公告)日:2018-09-21
申请号:CN201810295994.2
申请日:2018-04-04
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于生成对抗网络的任意姿态行人图片生成方法,仅通过将人物图片、图中行人的姿态以及目标迁移姿态的热力图输入生成器网络,即可得到前一位目标姿态的相同人物的图片。由于该方法的生成器中引入了姿态注意力机制,且采用了两个不同的判别器分别进行外貌一致性和姿态一致性的判别,使其能够应对图像变形、几何变换、视角转移等多种复杂情况。并且可以端到端训练。本发明提出的任意姿态的人物图片生成方法在现有技术思路的基础上进行了创新,采用新颖的结构进行网络模型搭建,相较于之前的方法,所合成的图片更加真实、自然,有很强的实际应用价值。
-
公开(公告)号:CN111046781B
公开(公告)日:2022-05-27
申请号:CN201911248274.1
申请日:2019-12-09
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于三元注意力机制的鲁棒三维目标检测方法,即以点云数据作为输入,通过该网络,输出在点云空间中目标物的三维包围盒。步骤包括:首先将点云转化成体素形式;然后使用三元注意力机制对每个体素进行特征提取;紧接着采用一个Coarse‑to‑Fine回归方式输出最终的候选框。该方法的核心思想包括如下两部分:1)采用了一种新颖的三元注意力机制来学习每个体素的特征表示,获得鲁棒的体素特征;2)使用金字塔采样融合方式实现跨层的融合,能同时获得网络低层的高分辨率精细的特征以及高层的语义信息,从而实现对目标精确的定位。本发明相较于之前的方法,尤其是在受干扰严重以及场景复杂的情况下,本发明的方法具有很好的鲁棒性。
-
公开(公告)号:CN111046781A
公开(公告)日:2020-04-21
申请号:CN201911248274.1
申请日:2019-12-09
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于三元注意力机制的鲁棒三维目标检测方法,即以点云数据作为输入,通过该网络,输出在点云空间中目标物的三维包围盒。步骤包括:首先将点云转化成体素形式;然后使用三元注意力机制对每个体素进行特征提取;紧接着采用一个Coarse-to-Fine回归方式输出最终的候选框。该方法的核心思想包括如下两部分:1)采用了一种新颖的三元注意力机制来学习每个体素的特征表示,获得鲁棒的体素特征;2)使用金字塔采样融合方式实现跨层的融合,能同时获得网络低层的高分辨率精细的特征以及高层的语义信息,从而实现对目标精确的定位。本发明相较于之前的方法,尤其是在受干扰严重以及场景复杂的情况下,本发明的方法具有很好的鲁棒性。
-
公开(公告)号:CN108564119B
公开(公告)日:2020-06-05
申请号:CN201810295994.2
申请日:2018-04-04
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于生成对抗网络的任意姿态行人图片生成方法,仅通过将人物图片、图中行人的的姿态以及目标迁移姿态的热力图输入生成器网络,即可得到前一位目标姿态的相同人物的图片。由于该方法的生成器中引入了姿态注意力机制,且采用了两个不同的判别器分别进行外貌一致性和姿态一致性的判别,使其能够应对图像变形、几何变换、视角转移等多种复杂情况。并且可以端到端训练。本发明提出的任意姿态的人物图片生成方法在现有技术思路的基础上进行了创新,采用新颖的结构进行网络模型搭建,相较于之前的方法,所合成的图片更加真实、自然,有很强的实际应用价值。
-
-
-