-
公开(公告)号:CN101770583B
公开(公告)日:2012-06-13
申请号:CN201010028992.0
申请日:2010-01-15
Applicant: 华中科技大学
IPC: G06K9/64
Abstract: 本发明公开了一种基于场景全局特征的模板匹配方法,用于根据目标模板检测图像中同类目标。该方法对场景图像逐像素点遍历提取与模板图像相同区域范围的搜索子图,计算每个搜索子图与模板图像的相关性,依据搜索子图与模板图像的相关性越大,该搜索子图对应的遍历像素点成为目标点可能性越大的准则选取候选目标像素点,在候选目标像素点中确定最终目标点。本发明关键之处在于利用全局特征来度量搜索子图与模板图像的相关性,全局特征是通过把模板和子图的相关性放到场景后计算整个场景的特征得到的,全局特征是整个场景的特征,带有一定的语义信息,使得目标检测的准确性提高。
-
公开(公告)号:CN101794394B
公开(公告)日:2011-11-30
申请号:CN201010111147.X
申请日:2010-02-05
Applicant: 华中科技大学
IPC: G06K9/64
Abstract: 本发明公开了一种基于邻域上下文的模板匹配方法,对场景图像逐像素点遍历提取与模板图像相同区域范围的搜索子图,对于满足邻域上下文约束的搜索子图,计算其与模板的相关性,依据相关性越大,该搜索子图对应的遍历像素点成为目标点可能性越大的准则选取目标像素点。本发明关键之处在利用了邻域上下文的约束,并不是在所有的位置都计算子图与模板的相关性,而是只在满足邻域上下文约束的位置计算。在目标部件检测中加入该约束,提高了检测的准确性,由于该约束去除了很多位置点,因此还提高了检测速度。
-
公开(公告)号:CN101794394A
公开(公告)日:2010-08-04
申请号:CN201010111147.X
申请日:2010-02-05
Applicant: 华中科技大学
IPC: G06K9/64
Abstract: 本发明公开了一种基于邻域上下文的模板匹配方法,对场景图像逐像素点遍历提取与模板图像相同区域范围的搜索子图,对于满足邻域上下文约束的搜索子图,计算其与模板的相关性,依据相关性越大,该搜索子图对应的遍历像素点成为目标点可能性越大的准则选取目标像素点。本发明关键之处在利用了邻域上下文的约束,并不是在所有的位置都计算子图与模板的相关性,而是只在满足邻域上下文约束的位置计算。在目标部件检测中加入该约束,提高了检测的准确性,由于该约束去除了很多位置点,因此还提高了检测速度。
-
公开(公告)号:CN101770583A
公开(公告)日:2010-07-07
申请号:CN201010028992.0
申请日:2010-01-15
Applicant: 华中科技大学
IPC: G06K9/64
Abstract: 本发明公开了一种基于场景全局特征的模板匹配方法,用于根据目标模板检测图像中同类目标。该方法对场景图像逐像素点遍历提取与模板图像相同区域范围的搜索子图,计算每个搜索子图与模板图像的相关性,依据搜索子图与模板图像的相关性越大,该搜索子图对应的遍历像素点成为目标点可能性越大的准则选取候选目标像素点,在候选目标像素点中确定最终目标点。本发明关键之处在于利用全局特征来度量搜索子图与模板图像的相关性,全局特征是通过把模板和子图的相关性放到场景后计算整个场景的特征得到的,全局特征是整个场景的特征,带有一定的语义信息,使得目标检测的准确性提高。
-
-
-