-
公开(公告)号:CN108647595A
公开(公告)日:2018-10-12
申请号:CN201810389331.7
申请日:2018-04-26
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于多属性深度特征的车辆重识别方法,包括:利用特征提取模型提取第A个池化层的测试图片集的深度特征,利用测试图片集的深度特征和W矩阵,得到查找集中的测试图片的深度特征与候选集中的目标图片的深度特征之间的马氏距离,按照马氏距离从小到大排序,得到测试图片与目标图片的相似度排序结果;所述测试图片集包括查找集与搜索集,所述测试图片集为包含车辆的图片;所述特征提取模型的训练包括:在GoogLeNet的第A个池化层后接入车辆多属性分类器,得到改进GoogLeNet,利用训练图片训练改进GoogLeNet,得到特征提取模型。本发明简化了模型训练过程,大大提高了重识别准确率,模型泛化性能很强。
-
公开(公告)号:CN108764065B
公开(公告)日:2020-12-08
申请号:CN201810428801.6
申请日:2018-05-04
Applicant: 华中科技大学
Abstract: 本发明公开了一种行人重识别特征融合辅助学习的方法,包括:将加入局部特征训练得到的全局特征提取模型用于提取行人图像的全局特征,利用全局特征进行行人重识别,所述全局特征提取模型的训练包括:采集全身图像训练集,检测全身图像训练集中的局部图像,得到局部图像训练集;分别利用全身图像训练集和局部图像训练集训练全身卷积神经网络和局部卷积神经网络,得到全身模型和局部模型;分别利用全身模型和局部模型提取全身图像训练集和局部图像训练集的全局特征和局部特征,利用融合局部特征后的全局特征训练全身模型,得到全局特征提取模型。本发明在训练时将局部特征和全局特征融合,提升了行人重识别的准确率。
-
公开(公告)号:CN108647577A
公开(公告)日:2018-10-12
申请号:CN201810323425.4
申请日:2018-04-10
Applicant: 华中科技大学
Abstract: 本发明公开了一种自适应难例挖掘的行人重识别模型、方法与系统,其中,识别方法包括:将样本图片随机分成每次迭代使用的训练集合,将训练集合输入卷积神经网络,利用softmax函数得到每个样本对属于正、负样本对的概率,进而利用多项逻辑斯蒂函数得到每个样本对的损失;利用每个样本对的损失获取难例样本对;利用难例样本对训练卷积神经网络,直到当前迭代次数达到迭代次数上限,得到行人重识别模型。利用行人重识别模型提取待识别图片集的中每个图片的特征,进而得到待识别图片集中样本对的相似度排序。本发明不存在过拟合、欠拟合、且识别准确率高。
-
公开(公告)号:CN108647595B
公开(公告)日:2021-08-03
申请号:CN201810389331.7
申请日:2018-04-26
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于多属性深度特征的车辆重识别方法,包括:利用特征提取模型提取第A个池化层的测试图片集的深度特征,利用测试图片集的深度特征和W矩阵,得到查找集中的测试图片的深度特征与候选集中的目标图片的深度特征之间的马氏距离,按照马氏距离从小到大排序,得到测试图片与目标图片的相似度排序结果;所述测试图片集包括查找集与搜索集,所述测试图片集为包含车辆的图片;所述特征提取模型的训练包括:在GoogLeNet的第A个池化层后接入车辆多属性分类器,得到改进GoogLeNet,利用训练图片训练改进GoogLeNet,得到特征提取模型。本发明简化了模型训练过程,大大提高了重识别准确率,模型泛化性能很强。
-
公开(公告)号:CN108647577B
公开(公告)日:2021-04-20
申请号:CN201810323425.4
申请日:2018-04-10
Applicant: 华中科技大学
Abstract: 本发明公开了一种自适应难例挖掘的行人重识别模型、方法与系统,其中,识别方法包括:将样本图片随机分成每次迭代使用的训练集合,将训练集合输入卷积神经网络,利用softmax函数得到每个样本对属于正、负样本对的概率,进而利用多项逻辑斯蒂函数得到每个样本对的损失;利用每个样本对的损失获取难例样本对;利用难例样本对训练卷积神经网络,直到当前迭代次数达到迭代次数上限,得到行人重识别模型。利用行人重识别模型提取待识别图片集的中每个图片的特征,进而得到待识别图片集中样本对的相似度排序。本发明不存在过拟合、欠拟合、且识别准确率高。
-
公开(公告)号:CN108764065A
公开(公告)日:2018-11-06
申请号:CN201810428801.6
申请日:2018-05-04
Applicant: 华中科技大学
CPC classification number: G06K9/00362 , G06K9/6256 , G06N3/0454 , G06N3/084
Abstract: 本发明公开了一种行人重识别特征融合辅助学习的方法,包括:将加入局部特征训练得到的全局特征提取模型用于提取行人图像的全局特征,利用全局特征进行行人重识别,所述全局特征提取模型的训练包括:采集全身图像训练集,检测全身图像训练集中的局部图像,得到局部图像训练集;分别利用全身图像训练集和局部图像训练集训练全身卷积神经网络和局部卷积神经网络,得到全身模型和局部模型;分别利用全身模型和局部模型提取全身图像训练集和局部图像训练集的全局特征和局部特征,利用融合局部特征后的全局特征训练全身模型,得到全局特征提取模型。本发明在训练时将局部特征和全局特征融合,提升了行人重识别的准确率。
-
-
-
-
-