-
公开(公告)号:CN110322446B
公开(公告)日:2021-02-19
申请号:CN201910585717.X
申请日:2019-07-01
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于相似性空间对齐的域自适应语义分割方法,将源域和目标域的分割输出分别变换到相似性空间,并对齐源域和目标域两者的相似性空间分布来减小域间差异,即可得到在无监督的目标域上有较好分割效果的语义分割模型。该方法在跨域语义分割任务中引入了相似性空间的概念,更好地编码了分割场景中类别间的相关性,利用判别器对不同域的相似性空间进行判别,使得分割网络更加关注图像的结构、类别共存性等信息,且整个网络可以端到端训练。本方法提出的基于相似性空间对齐的无监督域自适应语义分割方法在现有的技术思路上进行了创新,融入了分割场景中类别的相关性空间信息,分割性能更好,有着很强的实际应用价值。
-
公开(公告)号:CN110322446A
公开(公告)日:2019-10-11
申请号:CN201910585717.X
申请日:2019-07-01
Applicant: 华中科技大学
Abstract: 本发明公开了一种基于相似性空间对齐的域自适应语义分割方法,将源域和目标域的分割输出分别变换到相似性空间,并对齐源域和目标域两者的相似性空间分布来减小域间差异,即可得到在无监督的目标域上有较好分割效果的语义分割模型。该方法在跨域语义分割任务中引入了相似性空间的概念,更好地编码了分割场景中类别间的相关性,利用判别器对不同域的相似性空间进行判别,使得分割网络更加关注图像的结构、类别共存性等信息,且整个网络可以端到端训练。本方法提出的基于相似性空间对齐的无监督域自适应语义分割方法在现有的技术思路上进行了创新,融入了分割场景中类别的相关性空间信息,分割性能更好,有着很强的实际应用价值。
-