-
公开(公告)号:CN114969953B
公开(公告)日:2023-02-03
申请号:CN202210900578.7
申请日:2022-07-28
Applicant: 华中科技大学
IPC: G06F30/13 , G06F30/27 , G06N3/12 , G06N5/00 , G06N20/20 , G06N7/02 , G06F111/04 , G06F111/06
Abstract: 本发明属于盾构施工技术领域,并具体公开了一种基于CatBoost‑NSGA‑Ⅲ的盾构下穿隧道优化设计方法及设备。所述方法包括:确定管片优化设计的敏感因素,建立指标体系,采集盾构掘进过程中的实际监测数据并结合地质勘查,构建样本数据集;利用CatBoost算法进行学习训练,以构建基于CatBoost算法的隧道拱顶沉降、拱底竖向位移、拱底水平位移、拱底沉降量预测模型;将预测模型所得的非线性映射关系函数作为目标优化适应度函数,构建基于CatBoost‑NSGA‑Ⅲ的多目标优化模型,以获取盾构管片参数最优设计。本发明不仅实现了隧道拱顶沉降、拱底竖向位移、拱底水平位移、拱底沉降量的高精度预测,也实现了盾构下穿隧道优化设计的多目标智能优化。
-
公开(公告)号:CN114969953A
公开(公告)日:2022-08-30
申请号:CN202210900578.7
申请日:2022-07-28
Applicant: 华中科技大学
IPC: G06F30/13 , G06F30/27 , G06N3/12 , G06N5/00 , G06N20/20 , G06N7/02 , G06F111/04 , G06F111/06
Abstract: 本发明属于盾构施工技术领域,并具体公开了一种基于CatBoost‑NSGA‑Ⅲ的盾构下穿隧道优化设计方法及设备。所述方法包括:确定管片优化设计的敏感因素,建立指标体系,采集盾构掘进过程中的实际监测数据并结合地质勘查,构建样本数据集;利用CatBoost算法进行学习训练,以构建基于CatBoost算法的隧道拱顶沉降、拱底竖向位移、拱底水平位移、拱底沉降量预测模型;将预测模型所得的非线性映射关系函数作为目标优化适应度函数,构建基于CatBoost‑NSGA‑Ⅲ的多目标优化模型,以获取盾构管片参数最优设计。本发明不仅实现了隧道拱顶沉降、拱底竖向位移、拱底水平位移、拱底沉降量的高精度预测,也实现了盾构下穿隧道优化设计的多目标智能优化。
-