基于CNN的遥感影像光学适配结构选取方法及系统

    公开(公告)号:CN106934455B

    公开(公告)日:2019-09-06

    申请号:CN201710078795.1

    申请日:2017-02-14

    Abstract: 本发明公开了一种基于CNN的遥感影像光学适配结构选取方法及系统。其中,方法的实现包括:学习阶段,利用从遥感图像中选取的目标光学适配结构作为学习样本,设计出一种光学适配结构自动选取CNN模型;选取阶段,将待选取遥感影像切割成若干片元,经CNN分类模型,识别其中的适配结构,并用非极大值抑制滤掉低适配率的重复区域,最后通过基于相关峰的独特性分析(主次峰值比、最高锋锐度),确保识别的光学适配结构在遥感影像中没有重复模式。首次将CNN应用到光学适配结构自动选取上,考虑了光学适配结构的稳定性、独特性,能较好的选出光学适配结构,能适应多个尺度和旋转,具有较强的适应性。

    一种基于相关损失卷积神经网络的雷达图像斑噪抑制方法

    公开(公告)号:CN108629746B

    公开(公告)日:2022-02-15

    申请号:CN201810375532.1

    申请日:2018-04-24

    Abstract: 本发明公开了一种基于相关损失卷积神经网络的雷达图像斑噪抑制方法,包括:将雷达图像输入训练好的卷积神经网络,得到抑制斑噪的结果图像;卷积神经网络的训练方法包括:在遥感图像中叠加斑噪得到叠加斑噪后的图像,将叠加斑噪后的图像输入卷积神经网络,得到训练输出图像;根据遥感图像和训练输出图像的均方误差,得到误差损失,利用遥感图像和训练输出图像的互相关系数,得到相关损失;利用误差损失和相关损失,进行反向传播,更新卷积神经网络的权值参数;进而得到训练好的卷积神经网络。本发明利用误差损失和相关损失,更新卷积神经网络的权值参数,有效的提高了网络的雷达图像斑噪抑制效果。

    一种基于相关损失卷积神经网络的雷达图像斑噪抑制方法

    公开(公告)号:CN108629746A

    公开(公告)日:2018-10-09

    申请号:CN201810375532.1

    申请日:2018-04-24

    Abstract: 本发明公开了一种基于相关损失卷积神经网络的雷达图像斑噪抑制方法,包括:将雷达图像输入训练好的卷积神经网络,得到抑制斑噪的结果图像;卷积神经网络的训练方法包括:在遥感图像中叠加斑噪得到叠加斑噪后的图像,将叠加斑噪后的图像输入卷积神经网络,得到训练输出图像;根据遥感图像和训练输出图像的均方误差,得到误差损失,利用遥感图像和训练输出图像的互相关系数,得到相关损失;利用误差损失和相关损失,进行反向传播,更新卷积神经网络的权值参数;进而得到训练好的卷积神经网络。本发明利用误差损失和相关损失,更新卷积神经网络的权值参数,有效的提高了网络的雷达图像斑噪抑制效果。

    基于CNN的遥感影像光学适配结构选取方法及系统

    公开(公告)号:CN106934455A

    公开(公告)日:2017-07-07

    申请号:CN201710078795.1

    申请日:2017-02-14

    Abstract: 本发明公开了一种基于CNN的遥感影像光学适配结构选取方法及系统。其中,方法的实现包括:学习阶段,利用从遥感图像中选取的目标光学适配结构作为学习样本,设计出一种光学适配结构自动选取CNN模型;选取阶段,将待选取遥感影像切割成若干片元,经CNN分类模型,识别其中的适配结构,并用非极大值抑制滤掉低适配率的重复区域,最后通过基于相关峰的独特性分析(主次峰值比、最高锋锐度),确保识别的光学适配结构在遥感影像中没有重复模式。首次将CNN应用到光学适配结构自动选取上,考虑了光学适配结构的稳定性、独特性,能较好的选出光学适配结构,能适应多个尺度和旋转,具有较强的适应性。

Patent Agency Ranking