面向非独立同分布数据的联邦对比聚类学习方法及系统

    公开(公告)号:CN115563519A

    公开(公告)日:2023-01-03

    申请号:CN202211267754.4

    申请日:2022-10-17

    Abstract: 本发明公开了一种面向非独立同分布数据的联邦对比聚类学习方法及系统,属于联邦学习技术领域,包括:在中心服务器端将共享模型和原型矩阵分别下发到所挑选的各客户端中进行聚类对比训练,进行聚类对比训练时模型并不关注数据的分布,而只关注于数据聚类信息之间的对比关系,基于自监督对比学习关注局部特征的特点,缓解了对全局分布的依赖,从而改善了模型由于不平衡的数据分布而产生的偏移,也能够较好的表示数据的类分布并改善由类不平衡所引起的Non‑IID问题,同时也能够消除联邦学习对有标签数据的依赖,能够解决现有的联邦学习方法由于存Non‑IID数据分布问题所导致的模型准确率较低以及由于依赖标签数据所导致的无法在实际生产中进行应用的技术问题。

Patent Agency Ranking