一种基于GPU多序列比对算法的社交网络关联搜索方法

    公开(公告)号:CN102651030B

    公开(公告)日:2013-10-30

    申请号:CN201210100526.8

    申请日:2012-04-09

    Abstract: 本发明公开了一种基于GPU多序列比对算法的社交网络关联搜索方法,包括以下步骤:CPU对个体网页进行网络爬虫,以提取社交网络中的个体特征信息向量,CPU过滤个体特征信息向量中的冗余特征信息,以生成统一个体特征信息向量库,GPU根据统一个体特征信息向量库计算社交网络个体距离矩阵和矫正距离矩阵,GPU根据矫正距离矩阵构建社交网络关联路线指导树,GPU遍历社交网络关联路线指导树,以进行最优关联路线搜索。本发明充分利用GPU适合处理大量密集型数据的优势,将多序列比对算法解决关联搜索问题进行并行化,利用GPU完成矩阵及关联路线指导树的形成和遍历等复杂耗时操作,解决了社交网络数据量大和操作复杂性所带来的耗时长问题。

    一种基于GPU多序列比对算法的社交网络关联搜索方法

    公开(公告)号:CN102651030A

    公开(公告)日:2012-08-29

    申请号:CN201210100526.8

    申请日:2012-04-09

    Abstract: 本发明公开了一种基于GPU多序列比对算法的社交网络关联搜索方法,包括以下步骤:CPU对个体网页进行网络爬虫,以提取社交网络中的个体特征信息向量,CPU过滤个体特征信息向量中的冗余特征信息,以生成统一个体特征信息向量库,GPU根据统一个体特征信息向量库计算社交网络个体距离矩阵和矫正距离矩阵,GPU根据矫正距离矩阵构建社交网络关联路线指导树,GPU遍历社交网络关联路线指导树,以进行最优关联路线搜索。本发明充分利用GPU适合处理大量密集型数据的优势,将多序列比对算法解决关联搜索问题进行并行化,利用GPU完成矩阵及关联路线指导树的形成和遍历等复杂耗时操作,解决了社交网络数据量大和操作复杂性所带来的耗时长问题。

Patent Agency Ranking