一种基于图卷积神经网络的水下无人潜航器航迹融合方法及系统

    公开(公告)号:CN118445753A

    公开(公告)日:2024-08-06

    申请号:CN202410536580.X

    申请日:2024-04-30

    Abstract: 本发明公开了一种基于图卷积神经网络的水下无人潜航器航迹融合方法及系统,属于航迹融合领域,该方法将时空校准后的航迹数据转化为图数据,从而可以揭露不同节点之间的关系;通过将数据点表示为无向图的节点,将节点之间的关系表示为边,可以更直观地建模和分析数据,揭示数据隐含的模式和趋势;将图数据输入至预先训练好的图卷积神经网络模型得到航迹融合结果,能够实现在复杂动态海洋环境下水下无人潜航器的航迹融合,有效地解决了航迹融合过程中的准确性和快速性等问题。以所搭建的动态海洋模拟环境中无人潜航器的航迹规划模拟为实验例证,在实际应用过程中,可推广到水面无人艇,水下机器人等无人装备,具有良好的工程实用性。

    一种基于时空注意力的卷积-双向长短时记忆多源航迹关联方法及系统

    公开(公告)号:CN118520268B

    公开(公告)日:2024-11-19

    申请号:CN202410536907.3

    申请日:2024-04-30

    Abstract: 本发明公开了一种基于时空注意力的卷积‑双向长短时记忆多源航迹关联方法及系统,属于航迹关联领域,该方法利用CNN网络和第一注意力机制模块共同构建特征注意力模块,将时空配准后的多源航迹数据转化为特征序列;利用BiLSTM网络和第一注意力机制模块共同组成时间注意力模块,捕捉轨迹数据的时序特征;用全连接层将输出数据映射到新的特征空间,并用分类器进行打分;通过计算关联分数,确定多源航迹数据之间的关联关系。本发明使用CNN全面提取航迹空间特征,结合注意力机制确保重要特征发挥关键作用;使用BiLSTM全面提取航迹时间特征,结合注意力机制筛选出历史序列中最为重要的状态信息,克服了传统方法信息利用不完全的问题,提高了关联准确率。

    一种基于图卷积神经网络的水下无人潜航器航迹融合方法及系统

    公开(公告)号:CN118445753B

    公开(公告)日:2024-12-06

    申请号:CN202410536580.X

    申请日:2024-04-30

    Abstract: 本发明公开了一种基于图卷积神经网络的水下无人潜航器航迹融合方法及系统,属于航迹融合领域,该方法将时空校准后的航迹数据转化为图数据,从而可以揭露不同节点之间的关系;通过将数据点表示为无向图的节点,将节点之间的关系表示为边,可以更直观地建模和分析数据,揭示数据隐含的模式和趋势;将图数据输入至预先训练好的图卷积神经网络模型得到航迹融合结果,能够实现在复杂动态海洋环境下水下无人潜航器的航迹融合,有效地解决了航迹融合过程中的准确性和快速性等问题。以所搭建的动态海洋模拟环境中无人潜航器的航迹规划模拟为实验例证,在实际应用过程中,可推广到水面无人艇,水下机器人等无人装备,具有良好的工程实用性。

    一种基于时空注意力的卷积-双向长短时记忆多源航迹关联方法及系统

    公开(公告)号:CN118520268A

    公开(公告)日:2024-08-20

    申请号:CN202410536907.3

    申请日:2024-04-30

    Abstract: 本发明公开了一种基于时空注意力的卷积‑双向长短时记忆多源航迹关联方法及系统,属于航迹关联领域,该方法利用CNN网络和第一注意力机制模块共同构建特征注意力模块,将时空配准后的多源航迹数据转化为特征序列;利用BiLSTM网络和第一注意力机制模块共同组成时间注意力模块,捕捉轨迹数据的时序特征;用全连接层将输出数据映射到新的特征空间,并用分类器进行打分;通过计算关联分数,确定多源航迹数据之间的关联关系。本发明使用CNN全面提取航迹空间特征,结合注意力机制确保重要特征发挥关键作用;使用BiLSTM全面提取航迹时间特征,结合注意力机制筛选出历史序列中最为重要的状态信息,克服了传统方法信息利用不完全的问题,提高了关联准确率。

Patent Agency Ranking