基于欧氏对齐和Procrustes分析的EEG分类的迁移学习方法和系统

    公开(公告)号:CN111832427B

    公开(公告)日:2022-02-18

    申请号:CN202010578377.0

    申请日:2020-06-22

    Inventor: 伍冬睿 夏坤

    Abstract: 本发明公开了基于欧氏对齐和Procrustes分析的EEG分类的迁移学习方法和系统,属于基于运动想象的脑机接口领域。包括:对以往用户和新用户特征矩阵进行协方差对齐;对以往用户和新用户的特征矩阵进行均值对齐;根据以往用户的标签和均值对齐后以往用户的特征矩阵,计算以往用户的类别中心,根据新用户的伪标签和均值对齐后的新用户的特征矩阵,计算新用户的类别中心;构建以往用户和新用户类别中心矩阵,通过正交普氏分析方法,计算将新用户的类别中心与对应以往用户的类别中心对齐的旋转矩阵;将均值对齐后的新用户的特征矩阵和旋转矩阵相乘,得到最终对齐的新用户数据。

    基于欧氏对齐和Procrustes分析的EEG分类的迁移学习方法和系统

    公开(公告)号:CN111832427A

    公开(公告)日:2020-10-27

    申请号:CN202010578377.0

    申请日:2020-06-22

    Inventor: 伍冬睿 夏坤

    Abstract: 本发明公开了基于欧氏对齐和Procrustes分析的EEG分类的迁移学习方法和系统,属于基于运动想象的脑机接口领域。包括:对以往用户和新用户特征矩阵进行协方差对齐;对以往用户和新用户的特征矩阵进行均值对齐;根据以往用户的标签和均值对齐后以往用户的特征矩阵,计算以往用户的类别中心,根据新用户的伪标签和均值对齐后的新用户的特征矩阵,计算新用户的类别中心;构建以往用户和新用户类别中心矩阵,通过正交普氏分析方法,计算将新用户的类别中心与对应以往用户的类别中心对齐的旋转矩阵;将均值对齐后的新用户的特征矩阵和旋转矩阵相乘,得到最终对齐的新用户数据。

    一种用于运动想象脑机接口的隐私保护迁移学习方法

    公开(公告)号:CN114358066A

    公开(公告)日:2022-04-15

    申请号:CN202111598515.2

    申请日:2021-12-24

    Inventor: 伍冬睿 夏坤

    Abstract: 本发明属于基于运动想象的脑机接口领域,具体涉及一种用于运行想象脑机接口的隐私保护迁移学习方法,分为两个部分:1)以往用户模型训练,提出一种数据增强的手段,对每个样本的源域脑电信号进行随机弱化,得到增强后的源域脑电信号,提升模型的泛化性能;2)定义目标域模型,将源域模型的特征提取器和分类器均传递给目标域模型,得到初始目标域模型,固定分类器参数,并随机初始化M个辅助分类器,同时考虑不确定性降低和一致性正则化进行新用户模型训练,无需已知新用户的带标注数据,从而可以在更多的情况下使用。本发明解决的是运动想象脑机接口中的隐私保护迁移学习问题。本发明考虑了用户间差异并同时考虑保护以往用户的隐私不被泄露。

Patent Agency Ranking