一种对抗样本生成模型的构建方法及应用

    公开(公告)号:CN115019102B

    公开(公告)日:2024-09-10

    申请号:CN202210693348.8

    申请日:2022-06-17

    Abstract: 本发明公开了一种对抗样本生成模型的构建方法及应用,属于人工智能安全领域,所构建的模型包括级联的扰动模块和奖励计算模块;通过最大化图像样本集中的所有图像样本所对应的奖励的累积值,对对抗样本生成模型进行训练;当对抗样本生成模型训练完成后,扰动模块输出的扰动后的图像即为基于图像样本生成的对抗样本;本发明构建了一个基于强化学习的对抗样本生成模型,通过在对抗样本生成模型的训练过程中不断优化扰动值,使得查询朝向所期望的目标进行,规避了大量的重复查询,计算效率较高。除此之外,本发明所构建的模型并不依赖目标模型的梯度来生成对抗样本,实用性更强,适用范围更广。

    一种对抗样本生成模型的构建方法及应用

    公开(公告)号:CN115019102A

    公开(公告)日:2022-09-06

    申请号:CN202210693348.8

    申请日:2022-06-17

    Abstract: 本发明公开了一种对抗样本生成模型的构建方法及应用,属于人工智能安全领域,所构建的模型包括级联的扰动模块和奖励计算模块;通过最大化图像样本集中的所有图像样本所对应的奖励的累积值,对对抗样本生成模型进行训练;当对抗样本生成模型训练完成后,扰动模块输出的扰动后的图像即为基于图像样本生成的对抗样本;本发明构建了一个基于强化学习的对抗样本生成模型,通过在对抗样本生成模型的训练过程中不断优化扰动值,使得查询朝向所期望的目标进行,规避了大量的重复查询,计算效率较高。除此之外,本发明所构建的模型并不依赖目标模型的梯度来生成对抗样本,实用性更强,适用范围更广。

Patent Agency Ranking