-
公开(公告)号:CN115508188A
公开(公告)日:2022-12-23
申请号:CN202211188990.7
申请日:2022-09-28
Abstract: 本发明公开一种可视化超高温环境下材料蠕变疲劳性能试验系统,包括蠕变疲劳试验主机、超高温环境装置、夹具、真空系统、气路系统、数据采集及控制系统、数字图像分析系统、控制柜和冷却系统,将试样安装到夹具处,然后将真空室的前门和后门关闭,采用真空机组对真空室进行抽真空操作,打开控制柜上的加热控制部分,待温度与真空度达到试验要求后,启动蠕变疲劳主机对试样施加载荷,最后打开数字图像分析系统,完成可视化的超高温真空或充气环境下的材料蠕变疲劳试验测试。本发明用于完成在超高温300℃~2200℃之间、真空或充气环境下,实现可视化对材料进行蠕变疲劳性能测试。
-
公开(公告)号:CN115179178B
公开(公告)日:2023-11-14
申请号:CN202210791091.X
申请日:2022-07-05
Applicant: 华东理工大学 , 中国航发商用航空发动机有限责任公司 , 中国航发湖南动力机械研究所
Abstract: 本发明公开了一种叶盘叶片水射流强化与抛光一体化系统,包括振动抛光单元和水射流强化单元;振动抛光单元包括振动抛光槽,振动抛光槽内设置有用于夹持叶盘的夹具,振动抛光槽上安装有用于驱动振动抛光槽振动的振动电机;支撑弹簧的顶端与振动抛光槽固连、底端与工作台固连;水射流强化单元包括用于对叶盘的叶片进行水射流强化的水射流强化设备和用于夹持并能够驱动水射流强化设备在空间任意方向移动的驱动机构。方法:在振动抛光槽内充入研磨液,通过振动电机驱动振动抛光槽振动对叶片进行抛光,同时通过驱动机构驱动水射流强化设备移动以对叶盘的所有叶片依次进行水射流强化。本发明有效提高了叶盘叶片的表面强化质量和效率。
-
公开(公告)号:CN116604334A
公开(公告)日:2023-08-18
申请号:CN202310596340.4
申请日:2023-05-25
IPC: B23P23/00 , B22F10/85 , B22F10/66 , B22F10/50 , B22F12/82 , B33Y10/00 , B33Y30/00 , B33Y40/20 , B33Y50/02 , B33Y80/00 , B23P15/00
Abstract: 本发明提供一种离心轮结构增减材复合制造方法及系统,属于零件制造领域,方法包括:建立离心轮三维模型;对离心轮三维模型进行特征分解,得到底部圆环特征、中心圆环特征、顶部圆环特征及中心圆盘特征;基于底部圆环特征及中心圆环特征,采用自下而上、由内而外的方向增材制造底部圆环及初步中心圆环;基于中心圆盘特征,围绕初步中心圆环,沿径向旋转增材制造初步中心圆盘;基于中心圆盘特征,采用增材与减材交替的方式在初步中心圆盘的内部制造叶片,并沿径向继续增材制造中心圆盘;基于初步中心圆环及顶部圆环特征,采用自下而上的方向增材制造中心圆环及顶部圆环,以得到离心轮结构。本发明提高了离心轮的制造效率及离心轮的质量。
-
公开(公告)号:CN115466114A
公开(公告)日:2022-12-13
申请号:CN202210914197.4
申请日:2022-08-01
Applicant: 华东理工大学 , 暨南大学 , 上海交通大学 , 中国联合重型燃气轮机技术有限公司
IPC: C04B35/48 , C04B35/622 , C04B35/624 , C04B35/626 , C04B35/66 , F02C7/00 , B64D33/00
Abstract: 本发明提供了一种热障涂层材料及其制备方法和应用,属于航空发动机和燃气轮机超高温防护涂层技术领域。本发明以稀土锆酸盐晶体结构为靶向,充分考虑超温服役的红外辐射、高热膨胀系数、低热导率及高断裂韧性要求,通过Gd3+、Sm3+和Yb3+三元稀土重构烧绿石晶体结构,调控优化成分比例,增加晶体缺陷浓度,通过Yb3+的取代增强晶格畸变,有效降低高温红外辐射传热,在保证材料低热导率、高热膨胀系数基础上,实现高断裂韧性和优异的耐高温性能,进而延长涂层的使用寿命。本发明通过Ce4+对部分Zr4+或Hf4+晶体格位的取代,进一步增加整体晶体缺陷浓度,降低材料的热导率,提高抗腐蚀、耐高温及断裂韧性等性能。
-
公开(公告)号:CN115141917A
公开(公告)日:2022-10-04
申请号:CN202210791115.1
申请日:2022-07-05
Applicant: 华东理工大学 , 中国联合重型燃气轮机技术有限公司
Abstract: 本发明公开了一种多介质协同水射流表面强化喷射装置,包括高压水入口管、分流阀和多介质混合连接阀,多介质混合连接阀内设置有至少两个相互隔绝的多介质混合腔,高压水入口管和每个多介质混合腔都一端与分流阀连通,每个多介质混合腔的另一端均连接有射流管,射流管远离多介质混合腔的一端设置有射流喷头,每个多介质混合腔都连通有至少两个介质入口,每个介质入口远离对应的多介质混合腔的一端都连接有进料管。利用射流喷头喷出的多介质混合水射流喷射待强化工件的表面,以对待强化工件进行表面强化。本发明提高了表面强化效果,同时降低了强化后的表面的粗糙度。
-
公开(公告)号:CN115048832A
公开(公告)日:2022-09-13
申请号:CN202210579604.0
申请日:2022-05-25
Applicant: 华东理工大学 , 中国联合重型燃气轮机技术有限公司 , 苏州热工研究院有限公司
IPC: G06F30/23 , G01N3/18 , G06F113/14 , G06F119/04
Abstract: 本发明涉及一种蠕变疲劳载荷作用下高温管道的损伤容限评定方法及系统,涉及损伤容限领域,方法包括:建立含有不同尺寸裂纹的管道有限元模型并进行数值计算,得到管道内裂纹尖端的应力强度因子;获取裂纹扩展模型和管道裂纹尺寸;根据管道裂纹尺寸确定蠕变疲劳裂纹扩展速率;根据应力强度因子和蠕变疲劳裂纹扩展速率计算裂纹扩展寿命;根据管道裂纹尺寸确定断裂韧性;根据断裂韧性和管道裂纹尺寸计算管道的剩余强度;根据裂纹扩展寿命和剩余强度,构建蠕变疲劳载荷作用下高温管道的损伤容限评定图。本发明能够为管道结构的损伤容限评定提供思路,助力管道的断裂评定和剩余寿命预测,并对其结构的维护和检修提供指导建议。
-
公开(公告)号:CN114608954A
公开(公告)日:2022-06-10
申请号:CN202210349658.8
申请日:2022-04-02
Applicant: 华东理工大学
Abstract: 本发明公开一种低温液氧环境下材料疲劳性能测试系统,涉及材料力学试验装置技术领域;包括主机,所述主机上活动安装有密封设置的环境装置,所述环境装置内安装有夹具及变形测量引伸系统,所述夹具及变形测量引伸系统上用于安装待测试样品;所述环境装置分别通过管路连接有真空系统和液氧源。本发明提供的低温液氧环境下材料疲劳性能测试系统,能够实现材料在液氧环境下蠕变、拉伸与疲劳力学性能测试。
-
公开(公告)号:CN119876823A
公开(公告)日:2025-04-25
申请号:CN202510072288.1
申请日:2025-01-17
Applicant: 华东理工大学
Abstract: 本发明属于热障涂层技术领域,具体涉及一种孔隙梯度渐变的高韧性热障涂层。本发明提供的孔隙梯度渐变的热障涂层,包括金属粘接层和设置在所述金属粘接层表面的陶瓷层;所述陶瓷层的孔隙率由与所述金属粘接层接触的一端向另一端梯度增大。本发明中低孔隙率的陶瓷层区域形成陶瓷层致密底区,陶瓷层致密底区能够有效抵抗残余应力对TC层的破坏;高孔隙率的陶瓷层区域形成陶瓷层多孔顶部区域,陶瓷层多孔顶部区域在高温冲击下能够有效补偿烧结、相变和热失配引起的应变。由此,本发明提供的孔隙梯度渐变的热障涂层实现了机械性能和热性能的权衡,能够在高温和强冲刷冲击条件下应用。
-
公开(公告)号:CN114703440B
公开(公告)日:2023-11-17
申请号:CN202210349595.6
申请日:2022-04-02
Applicant: 华东理工大学 , 上海交通大学 , 中国联合重型燃气轮机技术有限公司
Abstract: 本发明提供了一种纳米氧化物分散强化高熵合金粘结层及其制备方法和应用,涉及热障涂层技术领域。本发明提供的纳米氧化物分散强化高熵合金粘结层,包括附着在高温合金基体表面的AlCoCrFeNi‑YHf高熵合金粘结层以及原位分散在所述AlCoCrFeNi‑YHf高熵合金粘结层上的纳米氧化物。本发明提供的纳米氧化物分散强化高熵合金粘结层具有更优的抗高温氧化性能与更高的服役温度。同时,该粘结层的制备方法简单、成本低,能够实现大面积工业应用。
-
公开(公告)号:CN115141917B
公开(公告)日:2023-11-14
申请号:CN202210791115.1
申请日:2022-07-05
Applicant: 华东理工大学 , 中国联合重型燃气轮机技术有限公司
Abstract: 本发明公开了一种多介质协同水射流表面强化喷射装置,包括高压水入口管、分流阀和多介质混合连接阀,多介质混合连接阀内设置有至少两个相互隔绝的多介质混合腔,高压水入口管和每个多介质混合腔都一端与分流阀连通,每个多介质混合腔的另一端均连接有射流管,射流管远离多介质混合腔的一端设置有射流喷头,每个多介质混合腔都连通有至少两个介质入口,每个介质入口远离对应的多介质混合腔的一端都连接有进料管。利用射流喷头喷出的多介质混合水射流喷射待强化工件的表面,以对待强化工件进行表面强化。本发明提高了表面强化效果,同时降低了强化后的表面的粗糙度。
-
-
-
-
-
-
-
-
-