-
公开(公告)号:CN108229435A
公开(公告)日:2018-06-29
申请号:CN201810103970.2
申请日:2018-02-01
Applicant: 北方工业大学
Abstract: 本发明提供一种城市道路监控场景下的行人识别方法,利用视频处理和深度学习技术判断多个视域不重叠相机所拍摄的行人是不是同一个行人。基于融合中心损失的卷积神经网络方法,本发明首先在行人数据集上训练卷积神经网络得到行人分类模型,并通过该模型实现待识别行人和数据库中行人的特征提取,最后通过特征度量和重排序方法得到候选行人列表,实现行人的识别。本发明可以实现道路监控场景下的行人辨识,进一步促进行人交通的有效管理。
-
公开(公告)号:CN108229435B
公开(公告)日:2021-03-30
申请号:CN201810103970.2
申请日:2018-02-01
Applicant: 北方工业大学
Abstract: 本发明提供一种城市道路监控场景下的行人识别方法,利用视频处理和深度学习技术判断多个视域不重叠相机所拍摄的行人是不是同一个行人。基于融合中心损失的卷积神经网络方法,本发明首先在行人数据集上训练卷积神经网络得到行人分类模型,并通过该模型实现待识别行人和数据库中行人的特征提取,最后通过特征度量和重排序方法得到候选行人列表,实现行人的识别。本发明可以实现道路监控场景下的行人辨识,进一步促进行人交通的有效管理。
-