-
公开(公告)号:CN113393474A
公开(公告)日:2021-09-14
申请号:CN202110648726.6
申请日:2021-06-10
Applicant: 北京邮电大学
Abstract: 本发明提供了一种基于特征融合的三维点云的分类和分割方法。该方法包括:将三维点云划分为多个局部区域,对每个局部区域内通过KNN算法建立多尺度区域,通过图注意力卷积层提取尺度区域的细粒度尺度特征,为局部区域的每个尺度特征分配注意力权重,对局部区域的各个尺度特征按照注意力权重进行加权融合,得到包含细粒度几何信息的点云的局部区域特征;通过双向长短期记忆网络获取不同局部区域特征之间的上下文信息,将各个局部区域特征进行融合,得到点云的全局语义特征,对三维点云进行分类与分割。本发明挖掘不同局部区域的细粒度多尺度信息,结合不同尺度区域之间的相关性捕获局部区域信息,提升了三维点云场景理解中分类与分割任务的精确度。
-
公开(公告)号:CN116823908B
公开(公告)日:2024-09-03
申请号:CN202310758435.1
申请日:2023-06-26
Applicant: 北京邮电大学
IPC: G06T7/50 , G06T9/00 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于多尺度特征相关性增强的单目图像深度估计方法。该方法包括:利用多模态RGB‑Depth融合模块对输入的RGB图像进行数据增强的预处理操作;使用多尺度深度编码模块提取数据增强后的多尺度特征图;在解码阶段使用RFF模块获取细粒度特征图,使用MFCE模块增强多尺度特征中的不同尺度间特征的相关性,通过结合RFF模块和MFCE模块融合和优化特征图,并获得逐像素深度图;通过深度表征目标函数优化整个单目深度估计网络模型的训练,确保泛化能力。本发明方法增强全局特征与局部特征之间的相关性,学习有效的外观结构信息,解决了由纹理偏差导致对外观结构错误估计的问题,重建了清晰稠密的单目深度图。
-
公开(公告)号:CN113393474B
公开(公告)日:2022-05-13
申请号:CN202110648726.6
申请日:2021-06-10
Applicant: 北京邮电大学
Abstract: 本发明提供了一种基于特征融合的三维点云的分类和分割方法。该方法包括:将三维点云划分为多个局部区域,对每个局部区域内通过KNN算法建立多尺度区域,通过图注意力卷积层提取尺度区域的细粒度尺度特征,为局部区域的每个尺度特征分配注意力权重,对局部区域的各个尺度特征按照注意力权重进行加权融合,得到包含细粒度几何信息的点云的局部区域特征;通过双向长短期记忆网络获取不同局部区域特征之间的上下文信息,将各个局部区域特征进行融合,得到点云的全局语义特征,对三维点云进行分类与分割。本发明挖掘不同局部区域的细粒度多尺度信息,结合不同尺度区域之间的相关性捕获局部区域信息,提升了三维点云场景理解中分类与分割任务的精确度。
-
公开(公告)号:CN115100090B
公开(公告)日:2025-04-25
申请号:CN202210646212.1
申请日:2022-06-09
Applicant: 北京邮电大学
Abstract: 本发明提供了一种基于时空注意的单目图像深度估计系统。包括:时空学习模块接收输入的单目图像序列,学习单目图像序列中的时空特征;时空增强模块对时空特征序列进行池化操作获得融合特征,对融合特征执行自注意力操作,得到空间增强后的时空特征;采用卷积操作分别对相邻视图的时空特征进行压缩,采用迭代选择的方式在不同特征图之间执行互注意力操作,得到时序关联特征。时空解码模块对空间增强后的时空特征和时序关联特征进行上采样,输出与图像深度大小相同的深度图。本发明系统不仅对单目视频中空间结构信息和时序关联信息的关注与学习,而且增强了网络对时空特征的映射和表达能力,重建了与输入图像序列的时空特征保持一致的单目深度图。
-
公开(公告)号:CN116823908A
公开(公告)日:2023-09-29
申请号:CN202310758435.1
申请日:2023-06-26
Applicant: 北京邮电大学
IPC: G06T7/50 , G06T9/00 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/08
Abstract: 本发明提供了一种基于多尺度特征相关性增强的单目图像深度估计方法。该方法包括:利用多模态RGB‑Depth融合模块对输入的RGB图像进行数据增强的预处理操作;使用多尺度深度编码模块提取数据增强后的多尺度特征图;在解码阶段使用RFF模块获取细粒度特征图,使用MFCE模块增强多尺度特征中的不同尺度间特征的相关性,通过结合RFF模块和MFCE模块融合和优化特征图,并获得逐像素深度图;通过深度表征目标函数优化整个单目深度估计网络模型的训练,确保泛化能力。本发明方法增强全局特征与局部特征之间的相关性,学习有效的外观结构信息,解决了由纹理偏差导致对外观结构错误估计的问题,重建了清晰稠密的单目深度图。
-
公开(公告)号:CN115100090A
公开(公告)日:2022-09-23
申请号:CN202210646212.1
申请日:2022-06-09
Applicant: 北京邮电大学
Abstract: 本发明提供了一种基于时空注意的单目图像深度估计系统。包括:时空学习模块接收输入的单目图像序列,学习单目图像序列中的时空特征;时空增强模块对时空特征序列进行池化操作获得融合特征,对融合特征执行自注意力操作,得到空间增强后的时空特征;采用卷积操作分别对相邻视图的时空特征进行压缩,采用迭代选择的方式在不同特征图之间执行互注意力操作,得到时序关联特征。时空解码模块对空间增强后的时空特征和时序关联特征进行上采样,输出与图像深度大小相同的深度图。本发明系统不仅对单目视频中空间结构信息和时序关联信息的关注与学习,而且增强了网络对时空特征的映射和表达能力,重建了与输入图像序列的时空特征保持一致的单目深度图。
-
-
-
-
-