-
公开(公告)号:CN119066605A
公开(公告)日:2024-12-03
申请号:CN202410960826.6
申请日:2024-07-17
Applicant: 北京邮电大学
Abstract: 本发明提供一种基于强化学习的联邦学习鲁棒性聚合方法及系统,该方法包括以下步骤:服务端节点接收客户端节点在完成本地训练后上传的模型参数;将每个客户端节点上传的模型参数构建为初始参数向量,将服务端节点当前的模型参数构建为本轮参数向量,基于所述初始参数向量、当前的本轮参数向量和客户端节点当前的权重值计算几何中值向量;计算每个客户端节点当前的初始参数向量与几何中值向量的距离,并构建为状态向量输入到强化学习模型中,所述强化学习模型对应每个客户端节点输出更新的权重值;基于每个客户端节点输出更新的权重值、所述初始参数向量和当前的本轮参数向量计算模型参数向量,所述模型参数向量中各个维度的值均为模型参数。