-
公开(公告)号:CN114818737B
公开(公告)日:2022-11-18
申请号:CN202210745539.4
申请日:2022-06-29
Applicant: 北京邮电大学
Abstract: 本发明提供一种科技论文数据文本语义特征提取方法、系统及存储介质,所述方法包括:获取科技论文的文本信息,并基于获取到的科技论文的文本信息构建实体关系图,所述文本信息包括论文标题以及关键词,实体关系图中的节点为论文标题或关键词,实体关系图中的边为节点之间的关联关系;基于获取到的科技论文的文本信息提取语义特征,得到语义特征矩阵;基于实体关系图确定原始邻接矩阵,将语义特征矩阵及所述原始邻接矩阵输入至图网络模型,得到空间特征矩阵;将语义特征矩阵与空间特征矩阵进行特征融合,得到科技论文的最终语义特征。该特征提取方法在提取科技论文语料的语义特征的基础上,利用知识图谱的空间关联,可较好的提取到科技论文的语义特征。
-
公开(公告)号:CN113312480A
公开(公告)日:2021-08-27
申请号:CN202110548961.6
申请日:2021-05-19
Applicant: 北京邮电大学
Abstract: 本公开提供一种基于图卷积网络的科技论文层级多标签分类方法及设备,其中方法包括:利用注意力机制在论文与关键词的无向图上进行图形节点嵌入,输出更新后的论文节点特征;将更新后的论文节点特征输入预先训练好的多输出深度神经网络模型中,输出整体的全局标签和局部标签;通过注意力机制组合局部标签和全局标签,组合后的标签经计算处理后得到最终的论文标签分类结果。本公开提供的方法及设备丰富了论文的语义表示,在论文分类中考虑了具有相同关键词的论文之间的关联,使得论文分类更加准确;并且分类过程中每一层仅关注相应层级的标签,减少了每个层需要区分的类别数量,充分获取到不同层级标签的特征,提高了论文分类的准确性。
-
公开(公告)号:CN114818737A
公开(公告)日:2022-07-29
申请号:CN202210745539.4
申请日:2022-06-29
Applicant: 北京邮电大学
Abstract: 本发明提供一种科技论文数据文本语义特征提取方法、系统及存储介质,所述方法包括:获取科技论文的文本信息,并基于获取到的科技论文的文本信息构建实体关系图,所述文本信息包括论文标题以及关键词,实体关系图中的节点为论文标题或关键词,实体关系图中的边为节点之间的关联关系;基于获取到的科技论文的文本信息提取语义特征,得到语义特征矩阵;基于实体关系图确定原始邻接矩阵,将语义特征矩阵及所述原始邻接矩阵输入至图网络模型,得到空间特征矩阵;将语义特征矩阵与空间特征矩阵进行特征融合,得到科技论文的最终语义特征。该特征提取方法在提取科技论文语料的语义特征的基础上,利用知识图谱的空间关联,可较好的提取到科技论文的语义特征。
-
公开(公告)号:CN113705603A
公开(公告)日:2021-11-26
申请号:CN202110784672.6
申请日:2021-07-12
Applicant: 北京邮电大学 , 北京百度网讯科技有限公司
Abstract: 本公开提供一种不完整多视角数据的聚类方法、电子设备,所述方法包括:通过多视角自编码器对不完整多视角数据缺失的多视角特征进行补全,以得到完整多视角数据及其统一特征表示;通过单层神经网络模型对完整多视角数据的局部结构进行学习,并利用图卷积网络对完整多视角数据的局部结构信息进行提取,以得到完整多视角数据各视角的节点特征表示;基于统一特征表示以及节点特征表示,通过预设的聚类算法进行聚类得到完整多视角数据的聚类结果。本公开的技术方案在补全不完整多视角数据的缺失特征后,通过结合多视角数据的全局结构和局部结构,增强多视角数据的特征表示,进而获得更准确的多视角数据的聚类结果。
-
公开(公告)号:CN113312480B
公开(公告)日:2022-12-09
申请号:CN202110548961.6
申请日:2021-05-19
Applicant: 北京邮电大学
Abstract: 本公开提供一种基于图卷积网络的科技论文层级多标签分类方法及设备,其中方法包括:利用注意力机制在论文与关键词的无向图上进行图形节点嵌入,输出更新后的论文节点特征;将更新后的论文节点特征输入预先训练好的多输出深度神经网络模型中,输出整体的全局标签和局部标签;通过注意力机制组合局部标签和全局标签,组合后的标签经计算处理后得到最终的论文标签分类结果。本公开提供的方法及设备丰富了论文的语义表示,在论文分类中考虑了具有相同关键词的论文之间的关联,使得论文分类更加准确;并且分类过程中每一层仅关注相应层级的标签,减少了每个层需要区分的类别数量,充分获取到不同层级标签的特征,提高了论文分类的准确性。
-
-
-
-