-
公开(公告)号:CN109191276A
公开(公告)日:2019-01-11
申请号:CN201810789859.3
申请日:2018-07-18
Applicant: 北京邮电大学
Abstract: 本发明提出一种基于强化学习的P2P网络借贷机构风险评估方法,属于网络大数据处理及电子信息技术领域。包括:首先,采集P2P网贷企业的公司简介文本信息,进行分词;然后,对所有文档的词,使用信息增益提取关键词;其次,使用Max-min ACLA算法构造强化学习模型;在强化学习模型的训练过程中,采用动态改变权重的方法更新样本权重;最后,利用训练好的强化学习模型对待评估机构进行风险评估。本发明采用了强化学习模型来解决文本分类数据少且数据不平衡的问题,同时通过动态更新样本权重的方法加快模型训练的收敛速度,节省了大量时间,使其具有更强的实用性。本发明针对公司简介文本提取关键词特征,非常易于实现。
-
公开(公告)号:CN109191276B
公开(公告)日:2021-10-29
申请号:CN201810789859.3
申请日:2018-07-18
Applicant: 北京邮电大学
Abstract: 本发明提出一种基于强化学习的P2P网络借贷机构风险评估方法,属于网络大数据处理及电子信息技术领域。包括:首先,采集P2P网贷企业的公司简介文本信息,进行分词;然后,对所有文档的词,使用信息增益提取关键词;其次,使用Max‑min ACLA算法构造强化学习模型;在强化学习模型的训练过程中,采用动态改变权重的方法更新样本权重;最后,利用训练好的强化学习模型对待评估机构进行风险评估。本发明采用了强化学习模型来解决文本分类数据少且数据不平衡的问题,同时通过动态更新样本权重的方法加快模型训练的收敛速度,节省了大量时间,使其具有更强的实用性。本发明针对公司简介文本提取关键词特征,非常易于实现。
-