-
公开(公告)号:CN109657552B
公开(公告)日:2022-11-29
申请号:CN201811366611.2
申请日:2018-11-16
Applicant: 北京邮电大学
IPC: G06V10/764 , G06V10/82
Abstract: 一种基于迁移学习实现跨场景冷启动的车型识别装置与方法,该车型识别装置设有三个组成部件:数据处理单元,网络训练单元和识别应用单元,本发明是在目标域只有少量已标注车型信息的车辆图像数据时,采用迁移学习的域适应方法,减少旧车型识别场景的源域和新车型识别场景的目标域之间的车型识别卷积神经网络模型的参数差异性,实现从旧车型识别场景到新车型识别场景的车型识别卷积神经网络模型的参数迁移,实现跨场景冷启动的车型识别。本发明能够用于实际智慧交通工程的初始阶段,在缺乏实际车型识别场景的已标注车型信息的车辆图像数据的条件下,使得卷积神经网络模型在车型识别任务上达到一个较高的准确率,具有较好的应用前景。
-
公开(公告)号:CN109657552A
公开(公告)日:2019-04-19
申请号:CN201811366611.2
申请日:2018-11-16
Applicant: 北京邮电大学
Abstract: 一种基于迁移学习实现跨场景冷启动的车型识别装置与方法,该车型识别装置设有三个组成部件:数据处理单元,网络训练单元和识别应用单元,本发明是在目标域只有少量已标注车型信息的车辆图像数据时,采用迁移学习的域适应方法,减少旧车型识别场景的源域和新车型识别场景的目标域之间的车型识别卷积神经网络模型的参数差异性,实现从旧车型识别场景到新车型识别场景的车型识别卷积神经网络模型的参数迁移,实现跨场景冷启动的车型识别。本发明能够用于实际智慧交通工程的初始阶段,在缺乏实际车型识别场景的已标注车型信息的车辆图像数据的条件下,使得卷积神经网络模型在车型识别任务上达到一个较高的准确率,具有较好的应用前景。
-