一种基于解耦的异质网络嵌入方法、装置及电子设备

    公开(公告)号:CN112232492A

    公开(公告)日:2021-01-15

    申请号:CN202011193283.8

    申请日:2020-10-30

    Inventor: 石川 王啸 王睿嘉

    Abstract: 本发明实施例提供了一种基于解耦的异质网络嵌入方法、装置及电子设备,该方法包括:将从待处理异质网络获取的不同元路径下的嵌入向量输入至编码层,获得待定的共有特征向量,并基于元路径鉴别网络模型,得到该待定的共有特征向量的损失函数值;将从嵌入向量查找层获取的待定的特有特征向量与待定的共有特征向量进行合成,并基于语义鉴别网络模型,得到合成嵌入向量的损失函数值;在两个损失函数值小于或等于预设损失函数阈值时;输出该待定的共有特征向量与待定的特有特征向量,否则,调整编码层、嵌入向量查找层和生成层的参数,并重复执行将多组嵌入向量输入至编码层的步骤。从而实现在不选择元路径的前提下,保证异质网络的低维向量的准确度。

    一种基于解耦的异质网络嵌入方法、装置及电子设备

    公开(公告)号:CN112232492B

    公开(公告)日:2022-04-12

    申请号:CN202011193283.8

    申请日:2020-10-30

    Inventor: 石川 王啸 王睿嘉

    Abstract: 本发明实施例提供了一种基于解耦的异质网络嵌入方法、装置及电子设备,该方法包括:将从待处理异质网络获取的不同元路径下的嵌入向量输入至编码层,获得待定的共有特征向量,并基于元路径鉴别网络模型,得到该待定的共有特征向量的损失函数值;将从嵌入向量查找层获取的待定的特有特征向量与待定的共有特征向量进行合成,并基于语义鉴别网络模型,得到合成嵌入向量的损失函数值;在两个损失函数值小于或等于预设损失函数阈值时;输出该待定的共有特征向量与待定的特有特征向量,否则,调整编码层、嵌入向量查找层和生成层的参数,并重复执行将多组嵌入向量输入至编码层的步骤。从而实现在不选择元路径的前提下,保证异质网络的低维向量的准确度。

    图结构估计模型的训练方法、装置、设备及存储介质

    公开(公告)号:CN113515519A

    公开(公告)日:2021-10-19

    申请号:CN202011574363.8

    申请日:2020-12-25

    Abstract: 本发明实施例公开了一种图结构估计模型的训练方法、装置、设备及存储介质,其中方法包括:获取初始图以及初始图对应的标签信息;初始图包含多个节点,标签信息用于指示初始图中目标节点所属类别,目标节点为初始图的多个节点中任意一个或多个;调用图结构估计模型包括的图预测模型对初始图进行预测处理,得到初始图对应的观测信息;调用图结构估计模型包括的图估计器基于标签信息和观测信息进行估计处理得到估计图;并调用图预测模型对估计图进行预测处理,得到估计图对应的预测信息;基于估计图对应的预测信息和标签信息对图预测模型进行优化。采用本发明实施例可提供图结构估计模型的准确度。

Patent Agency Ranking