-
公开(公告)号:CN111626292B
公开(公告)日:2023-06-30
申请号:CN202010388458.4
申请日:2020-05-09
Applicant: 北京邮电大学
IPC: G06V20/62 , G06V30/148 , G06V30/146 , G06N3/0464 , G06N3/08
Abstract: 一种基于深度学习技术的楼宇指示标识的文字识别方法,包括:采用检测网络对场景图片进行检测,获得楼宇指示标识文本的4个角点坐标,截取出字符图片;将字符图片分别输入MORN网络和进行霍夫直线处理,并将MORN网络矫正后的图片和霍夫直线变换后的图片进行图像融合,获得融合图片;构建楼宇指示标识文本识别模型,输入融合图片,处理流程如下:先将融合图片使用经典卷积神经网络CNN提取特征图,然后将特征图的每列作为一个时间片输入到长短期记忆网络LSTM中,并输出得到每个时间片对应的文本字符类别,采用损失函数Loss去除空白字符后,获得楼宇指示标识文本。本发明属于信息技术领域,能实现对楼宇指示标识文本的准确识别。
-
公开(公告)号:CN111626292A
公开(公告)日:2020-09-04
申请号:CN202010388458.4
申请日:2020-05-09
Applicant: 北京邮电大学
Abstract: 一种基于深度学习技术的楼宇指示标识的文字识别方法,包括:采用检测网络对场景图片进行检测,获得楼宇指示标识文本的4个角点坐标,截取出字符图片;将字符图片分别输入MORN网络和进行霍夫直线处理,并将MORN网络矫正后的图片和霍夫直线变换后的图片进行图像融合,获得融合图片;构建楼宇指示标识文本识别模型,输入融合图片,处理流程如下:先将融合图片使用经典卷积神经网络CNN提取特征图,然后将特征图的每列作为一个时间片输入到长短期记忆网络LSTM中,并输出得到每个时间片对应的文本字符类别,采用损失函数Loss去除空白字符后,获得楼宇指示标识文本。本发明属于信息技术领域,能实现对楼宇指示标识文本的准确识别。
-