-
公开(公告)号:CN113163466B
公开(公告)日:2022-11-01
申请号:CN202110449658.0
申请日:2021-04-25
Applicant: 北京邮电大学
Abstract: 本发明公布了一种大规模应用场景下的基于模糊决策树的自适应鱼群寻路包路由方法。主要解决飞行自组网中的端到端时延问题。所述的方法包括:应用模糊决策树进行跳数预测,通过离线训练模糊决策树模型。属性模糊阶段采用三角模糊函数对输入属性进行语义划分,离线训练阶段采用ID3算法进行决策树建立。为了更新节点信息采用基于鱼群算法的自适应Hello包广播机制,从基站开始逐跳广播Hello包,达到节能和降低冲突的目的。为了保证较高的传输成功率,采用了指数加权平均移动法进行最优节点的预测,指数加权平均对过去历史信息做均值处理的时候加上指数相关的权重,离当前时间越近的历史信息数据权重越大,离当前时间越远的历史信息数据权重越小。
-
公开(公告)号:CN113163466A
公开(公告)日:2021-07-23
申请号:CN202110449658.0
申请日:2021-04-25
Applicant: 北京邮电大学
Abstract: 本发明公布了一种大规模应用场景下的基于模糊决策树的自适应鱼群寻路包路由方法。主要解决飞行自组网中的端到端时延问题。所述的方法包括:应用模糊决策树进行跳数预测,通过离线训练模糊决策树模型。属性模糊阶段采用三角模糊函数对输入属性进行语义划分,离线训练阶段采用ID3算法进行决策树建立。为了更新节点信息采用基于鱼群算法的自适应Hello包广播机制,从基站开始逐跳广播Hello包,达到节能和降低冲突的目的。为了保证较高的传输成功率,采用了指数加权平均移动法进行最优节点的预测,指数加权平均对过去历史信息做均值处理的时候加上指数相关的权重,离当前时间越近的历史信息数据权重越大,离当前时间越远的历史信息数据权重越小。
-