一种基于图嵌入与注意力机制的图神经网络会话推荐方法

    公开(公告)号:CN116485501B

    公开(公告)日:2024-02-27

    申请号:CN202310475414.9

    申请日:2023-04-28

    Abstract: 大提高了推荐准确率。本发明提供一种基于图嵌入与注意力机制的图神经网络会话推荐方法,首先将数据集中的会话序列转化为会话图结构;将会话图结构作为门控图神经网络的输入,进行物品特征提取,得到物品特征向量;结合注意力机制和LSTM,对用户的兴趣进行建模,得到用户对于每个物品的兴趣;最后结合用户兴趣和物品特征向量计算每个项目的得分,生成最终的预测结果。本发明通过构建全局图提取了单一会话图不能提供的额外信息辅助物品特征向量的构建,并创新性的提出

    一种触发词和论元的抽取方法、系统、设备及介质

    公开(公告)号:CN116205220A

    公开(公告)日:2023-06-02

    申请号:CN202310438459.9

    申请日:2023-04-23

    Abstract: 本发明公开一种触发词和论元的抽取方法、系统、设备及介质,涉及自然语言处理技术领域。所述方法包括:获取目标文本;所述目标文本是由自然语言的字符数据构成的文本;对所述目标文本进行预处理,得到事件信息;所述事件信息包括文本段落及对应的事件类型和事件属性;利用事件抽取模型,对所述事件信息的触发词和论元进行抽取,得到事件分析结构;所述事件分析结构是由触发词及对应的字符数据、论元及对应的字符数据构成的;所述事件抽取模型包括依次连接的多头注意力模块和T5预训练模型;所述多头注意力模块包括依次连接的编码器和解码器。本发明能够提高事件抽取检测的精确率。

    一种触发词和论元的抽取方法、系统、设备及介质

    公开(公告)号:CN116205220B

    公开(公告)日:2024-02-06

    申请号:CN202310438459.9

    申请日:2023-04-23

    Abstract: 本发明公开一种触发词和论元的抽取方法、系统、设备及介质,涉及自然语言处理技术领域。所述方法包括:获取目标文本;所述目标文本是由自然语言的字符数据构成的文本;对所述目标文本进行预处理,得到事件信息;所述事件信息包括文本段落及对应的事件类型和事件属性;利用事件抽取模型,对所述事件信息的触发词和论元进行抽取,得到事件分析结构;所述事件分析结构是由触发词及对应的字符数据、论元及对应的字符数据构成的;所述事件抽取模型包括依次连接的多头注意力模块和T5预训练模型;所述多头注意力模块包括依次连接的编码器和解码器。本发明能够提高事件抽取检测的精确率。

    一种基于图嵌入与注意力机制的图神经网络会话推荐方法

    公开(公告)号:CN116485501A

    公开(公告)日:2023-07-25

    申请号:CN202310475414.9

    申请日:2023-04-28

    Abstract: 本发明提供一种基于图嵌入与注意力机制的图神经网络会话推荐方法,首先将数据集中的会话序列转化为会话图结构;将会话图结构作为门控图神经网络的输入,进行物品特征提取,得到物品特征向量;结合注意力机制和LSTM,对用户的兴趣进行建模,得到用户对于每个物品的兴趣;最后结合用户兴趣和物品特征向量计算每个项目的得分,生成最终的预测结果。本发明通过构建全局图提取了单一会话图不能提供的额外信息辅助物品特征向量的构建,并创新性的提出使用LSTM解决传统会话图构建过程中的问题,优化用户兴趣建模过程。相比之前的会话推荐算法,在没有增加很多训练时间成本的前提下,大大提高了推荐准确率。

Patent Agency Ranking