一种基于多阶邻近相似度的网络表示学习的方法

    公开(公告)号:CN109447261B

    公开(公告)日:2023-08-04

    申请号:CN201811175451.3

    申请日:2018-10-09

    Abstract: 本发明提出一种基于多阶邻近相似度的网络表示学习的方法。相比于传统的基于结构分析的网络表示只考虑了一阶邻近相似度和二阶邻近相似度的关系,本发明重点为节点间的高阶邻近相似度建模,分别设计了不同类别的间接邻近相似度的计算方法,尤其是考虑到了信息在网络传播过程中会随着距离的增加而衰减,因此,本发明能对当前节点的不同邻居节点进行预测,更加准确的找到与目标节点的关联度最大的邻近节点,从而能够得到语义更加丰富,具有更高的可靠性和真实性的表示向量。

    一种基于多阶邻近相似度的网络表示学习的方法

    公开(公告)号:CN109447261A

    公开(公告)日:2019-03-08

    申请号:CN201811175451.3

    申请日:2018-10-09

    Abstract: 本发明提出一种基于多阶邻近相似度的网络表示学习的方法。相比于传统的基于结构分析的网络表示只考虑了一阶邻近相似度和二阶邻近相似度的关系,本发明重点为节点间的高阶邻近相似度建模,分别设计了不同类别的间接邻近相似度的计算方法,尤其是考虑到了信息在网络传播过程中会随着距离的增加而衰减,因此,本发明能对当前节点的不同邻居节点进行预测,更加准确的找到与目标节点的关联度最大的邻近节点,从而能够得到语义更加丰富,具有更高的可靠性和真实性的表示向量。

Patent Agency Ranking