一种面向联邦学习的成员推理攻击方法

    公开(公告)号:CN117313100A

    公开(公告)日:2023-12-29

    申请号:CN202311153868.0

    申请日:2023-09-08

    Abstract: 本发明公开了一种面向联邦学习的成员推理攻击方法,通过训练过程中的模型的多个训练轮次信息,观察模型参数变化规律,充分加强对训练过程中纵向信息的利用,并通过最后一层的偏差参数完成攻击。同时针对联邦学习系统中的两种模型设计局部攻击和全局攻击,以评估联邦学习的隐私泄露风险。对于局部攻击,基于神经网络充分学习成员数据与非成员数据差异,实现成员和非成员数据的区分。对于全局攻击,基于细粒度差异比较实现成员数据的来源推断。此外,本发明在不干扰模型训练的情况下进行攻击,不存在被系统检测的风险,通过特征放大操作增强了成员数据与非成员数据之间的偏差变化差异,在较少的参数下实现了更强攻击效果,方法具有高效性。

Patent Agency Ranking