-
公开(公告)号:CN110598646B
公开(公告)日:2022-07-12
申请号:CN201910874723.7
申请日:2019-09-16
Applicant: 北京邮电大学
IPC: G06V20/40 , G06V10/77 , G06V10/776 , G06K9/62
Abstract: 本发明公开了一种基于深度特征的无约束重复动作计数方法,其特征在于,具体步骤包括如下:构建BN‑Inception网络,并进行深度特征提取;将提取的深度特征进行降维,得到降维后的周期图;利用傅里叶变换对所述周期图进行分段阈值滤波,得到光滑的频率图;根据滤波后的频率图进行计数。本发明提供了一种基于深度特征的无约束重复动作计数方法,为了捕获较鲁棒的运动特征并有效的避免相机移动的干扰,对捕获的视频提取RGB和光流图,在此基础上使用深度ConvNets进行特征提取,基于特征值寻找体现重复动作的运动规律,使用变周期的傅里叶变换来处理复杂场景的非静止的视频动态,获取明显的运动频率,更好的统计重复运动次数。
-
公开(公告)号:CN110598646A
公开(公告)日:2019-12-20
申请号:CN201910874723.7
申请日:2019-09-16
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于深度特征的无约束重复动作计数方法,其特征在于,具体步骤包括如下:构建BN-Inception网络,并进行深度特征提取;将提取的深度特征进行降维,得到降维后的周期图;利用傅里叶变换对所述周期图进行分段阈值滤波,得到光滑的频率图;根据滤波后的频率图进行计数。本发明提供了一种基于深度特征的无约束重复动作计数方法,为了捕获较鲁棒的运动特征并有效的避免相机移动的干扰,对捕获的视频提取RGB和光流图,在此基础上使用深度ConvNets进行特征提取,基于特征值寻找体现重复动作的运动规律,使用变周期的傅里叶变换来处理复杂场景的非静止的视频动态,获取明显的运动频率,更好的统计重复运动次数。
-