-
公开(公告)号:CN113163332B
公开(公告)日:2022-07-05
申请号:CN202110449681.X
申请日:2021-04-25
Applicant: 北京邮电大学
Abstract: 本发明公布了一种基于度量学习的路标图着色无人机节能续航数据收集方法。主要解决无人机辅助传感器网络中的吞吐量和能耗问题。所述的方法包括:对无人机辅助传感器网络进行模型建立,提出了一种同构的网络模型,网络中的节点都具有移动行,并且具有群体移动性和群体行为特点。然后应用概率路标构造全局地图。利用度量学习的方法对无人机继续轨迹优化,离线训练度量矩阵,离线训练阶段采用LMNN算法构造度量矩阵。为了更新节点信息采用广播Hello包机制,从基站开始逐跳广播Hello包。为了保证较高的传输成功率和吞吐量,采用了图着色的方式减少多跳传输的冲突,由于数据包的传输可能和广播信息收集节点重叠,所以本文存在多跳信道分配问题,因此网络可以用图来表示,图中的每个点代表网络中的节点,连接两点的边代表两点的发包通信,因此多跳网络的信道分配问题可以转换为图着色问题。在支持快速移动的无人机辅助网络中,无人机飞行速度较快,且地面节点可以是具有移动性的移动机器人,因此采用接触时间划分优先级的信道接入方法。
-
公开(公告)号:CN113163332A
公开(公告)日:2021-07-23
申请号:CN202110449681.X
申请日:2021-04-25
Applicant: 北京邮电大学
Abstract: 本发明公布了一种基于度量学习的路标图着色无人机节能续航数据收集方法。主要解决无人机辅助传感器网络中的吞吐量和能耗问题。所述的方法包括:对无人机辅助传感器网络进行模型建立,提出了一种同构的网络模型,网络中的节点都具有移动性。利用度量学习的方法对无人机继续轨迹优化,离线训练度量矩阵,离线训练阶段采用LMNN算法构造度量矩阵。网络可以用图来表示,图中的每个点代表网络中的节点,连接两点的边代表两点的发包通信,因此多跳网络的信道分配问题可以转换为图着色问题。在支持快速移动的无人机辅助网络中,无人机飞行速度较快,且地面节点可以是具有移动性的移动机器人,因此采用接触时间划分优先级的信道接入方法。
-