-
公开(公告)号:CN113112188B
公开(公告)日:2022-05-17
申请号:CN202110529491.9
申请日:2021-05-14
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN113112188A
公开(公告)日:2021-07-13
申请号:CN202110529491.9
申请日:2021-05-14
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于预筛选动态集成的电力调度监控数据异常检测方法,包括:使用电力调度监控历史数据训练一定数量的基检测器;使用孤立森林方法对全部基检测器进行预筛选,筛选掉性能较差的基检测器;使用集成式KNN算法从历史数据中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用最大值法根据筛选后剩余的基检测器在验证子集上的输出生成验证子集的假真值,计算基检测器在验证子集上的输出与假真值的皮尔逊相关系数;使用基于直方图的基检测器选择方法根据皮尔逊相关系数选择基检测器,平均所选基检测器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够提升电力调度监控数据异常检测的准确率。
-
公开(公告)号:CN112465153A
公开(公告)日:2021-03-09
申请号:CN202011510541.0
申请日:2020-12-18
Applicant: 北京邮电大学
Abstract: 本发明公开了一种基于不平衡集成二分类的磁盘故障预测方法,包括:对磁盘的SMART数据进行采样,选取与磁盘故障相关的状态特征作为原始数据集,通过数据分区混合采样获得平衡数据集;将磁盘原始数据集和平衡数据集输入RF算法进行机器学习,分别训练出偏向多数类的原始模型和局部域加强和削弱模型,集成两种模型获得偏向外围边界的混合模型;根据放入原始磁盘数据集近邻的不平衡程度,自适应地选择三种模型,所获分类概率用来预测磁盘故障状态。本发明可以有效解决正、异常样本数量不均衡下磁盘故障预测难度大的问题,提高基于机器学习的磁盘故障预测能力。
-
公开(公告)号:CN113128913B
公开(公告)日:2022-05-17
申请号:CN202110529495.7
申请日:2021-05-14
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于反转信息熵动态集成的电力调度监控数据异常检测方法,包括:将电力调度监控历史数据划分为训练集和验证集,使用训练集训练一定数量的基分类器,基分类器的输出为输入数据属于正常类的概率;使用异常类标记方法将验证集中一部分历史数据标记为异常类;使用KNN算法从验证集中选择与待检测数据欧式距离较小的历史数据作为验证子集;使用基于反转信息熵的基分类器评价方法计算基分类器在验证子集中数据上的得分;使用基于无参数统计学假设检验的基分类器选择方法根据得分选择基分类器,平均所选基分类器的输出作为待检测数据的检测结果。本发明实施例提供的技术方案,能够降低电力调度监控数据异常检测的漏报率。
-
公开(公告)号:CN113128076A
公开(公告)日:2021-07-16
申请号:CN202110542073.3
申请日:2021-05-18
Applicant: 北京邮电大学
IPC: G06F30/20 , G06Q10/04 , G06Q10/06 , G06Q50/06 , G06F111/08 , G06F119/12
Abstract: 本发明实施例提出了一种基于双向加权图模型的电力调度自动化系统故障溯源方法,包括:采集电力调度自动化系统中服务器组件的资源占用数据,将这些数据组成的多个时间序列离散化,获得包含告警段的时间序列,剔除该时间序列中包含的告警时间段,获得无告警段时间序列;计算组件信息熵和组件间传递熵,建立有无告警段的信息相关矩阵,通过其变化率衡量告警前后的差异程度,采用归一化技术获得信息差异矩阵;提取信息变化较高的特征及特征间交互信息,构建双向加权图模型,结合节点自身信息和出入度信息变化拟合故障源头程度指标进行排序,依据排序结果追溯故障源头。本发明实施例提供的技术方案,提高电力调度自动化系统故障溯源的性能。
-
公开(公告)号:CN112163682A
公开(公告)日:2021-01-01
申请号:CN202011118535.0
申请日:2020-10-19
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于信息差异图模型的电力调度自动化系统故障溯源方法,包括:选取电力调度自动化系统告警前后的历史数据,通过k‑means算法获得聚类中心,将其作为区间划分的端点,每个区间的均值作为连续特征的离散化结果;计算电力调度自动化系统组件的信息熵和组件间的传递熵,建立有无告警段的信息相关矩阵,通过其变化率衡量告警前后的差异程度,并采用归一化技术获得信息差异矩阵;提取电力调度自动化系统告警信息变化较高的特征及特征间的交互信息,进一步构建双向图和节点自信息相结合的信息差异图模型,拟合故障程度指标进行故障程度排序。本发明实施例提供的技术方案,提高电力调度自动化系统故障溯源的性能。
-
公开(公告)号:CN109460791A
公开(公告)日:2019-03-12
申请号:CN201811351192.5
申请日:2018-11-14
Applicant: 北京邮电大学
IPC: G06K9/62
Abstract: 本发明实施例提出了一种基于边缘样本密度度量的最近邻异常检测方法,包括:多次随机采样获得正常样本的多个子训练集,结合欧氏距离计算子集中各点距其最近点的距离,以该距离为半径构建区域,将不属于任何区域的测试点作为全局异常;对非全局异常的测试点,找到其最近训练点及该训练点的最近训练点,将两点所在区域半径的比值作为该测试点异常的全局度量值;将测试点到其最近训练点区域边缘的最近距离与该区域半径的比值作为该点异常的局部度量值,结合两次度量值得到测试点的隔离分数,将多个子集中隔离分数的平均值作为异常分数。本发明实施例提供的技术方案,充分考虑了边缘样本的分布特征,能有效解决边缘样本邻近区域内局部异常检测问题。
-
公开(公告)号:CN112181706B
公开(公告)日:2023-09-22
申请号:CN202011148000.8
申请日:2020-10-23
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于对数区间隔离的电力调度数据异常检测方法,包括:通过Bagging技术生成大量训练数据集的子集;计算每个子集空间下每个子样本对于该空间的马氏距离,根据样本马氏距离对子集空间中每个样本进行对数区间隔离;根据区间内样本的数据分布对样本进行二叉划分,在左右子树节点的子集上重复上面的过程,直至达到终止条件;构建多个对数区间隔离子树,并将其组成对数区间隔离森林异常检测器,求出每个样本在每个子树下的路径长度,集成每个子树中对应数据的路径并取平均值求得异常分数,根据异常率阈值筛选出数据集中的异常样本;通过构建的对数区间隔离森林异常检测器判断电力数据的异常情况,提高数据异常检测准确率。
-
公开(公告)号:CN112181706A
公开(公告)日:2021-01-05
申请号:CN202011148000.8
申请日:2020-10-23
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于对数区间隔离的电力调度数据异常检测方法,包括:通过Bagging技术生成大量训练数据集的子集;计算每个子集空间下每个子样本对于该空间的马氏距离,根据样本马氏距离对子集空间中每个样本进行对数区间隔离;根据区间内样本的数据分布对样本进行二叉划分,在左右子树节点的子集上重复上面的过程,直至达到终止条件;构建多个对数区间隔离子树,并将其组成对数区间隔离森林异常检测器,求出每个样本在每个子树下的路径长度,集成每个子树中对应数据的路径并取平均值求得异常分数,根据异常率阈值筛选出数据集中的异常样本;通过构建的对数区间隔离森林异常检测器判断电力数据的异常情况,提高数据异常检测准确率。
-
公开(公告)号:CN109508733A
公开(公告)日:2019-03-22
申请号:CN201811233705.2
申请日:2018-10-23
Applicant: 北京邮电大学
Abstract: 本发明实施例提出了一种基于分布概率相似度度量的异常检测方法,包括:多次随机采样获得正常样本数据的多个子集,以全二叉树结构保存每个子集的随机隔离过程,根据漂移比例划定回溯的阈值深度;根据测试点落在每棵树的外部叶子节点位置及阈值深度,由其所在叶子节点回溯到阈值深度的祖先节点,提取该节点下所有数据作为度量与测试点相似度的训练数据;以测试点与训练数据集内某点为端点,在各属性维度上分别计算其余数据点出现在此两点之间的概率,结合闵氏距离计算测试点与数据集内所有点的不相似程度,得出该点的异常值。本发明实施例提供的技术方案,可以有效解决训练数据集中无异常数据及局部异常检测问题。
-
-
-
-
-
-
-
-
-