-
公开(公告)号:CN112733602A
公开(公告)日:2021-04-30
申请号:CN202011438882.1
申请日:2020-12-07
Applicant: 北京航空航天大学 , 杭州海康威视数字技术股份有限公司
Abstract: 本发明提供一种关系引导的行人属性识别方法,其中,该方法包括以下步骤:(A)以卷积神经网络提取图像特征,将特征图与属性进行关联,并将特征图转化为与属性具有强关联的属性特征向量;(B)根据(A)生成的属性特征向量,引入自注意力机制,生成代表属性之间关系的关系矩阵;(C)将行人属性关系分为显性关系和隐性关系。显性关系代表先验信息关系,包括层级关系和空间位置关系。隐性关系通过数据驱动的方式形成构建的属性关系。通过S1)提出的属性特征向量和S2)提出的关系矩阵生成方式,生成不同类型的属性关系矩阵;(D)以图卷积的形式充分利用关系矩阵和属性特征向量,进行属性推理预测;(E)将测试集输入到行人属性识别模型中进行识别,对实验结果进行评估。
-
公开(公告)号:CN112733602B
公开(公告)日:2022-08-05
申请号:CN202011438882.1
申请日:2020-12-07
Applicant: 北京航空航天大学 , 杭州海康威视数字技术股份有限公司
Abstract: 本发明提供一种关系引导的行人属性识别方法,其中,该方法包括以下步骤:(A)以卷积神经网络提取图像特征,将特征图与属性进行关联,并将特征图转化为与属性具有强关联的属性特征向量;(B)根据(A)生成的属性特征向量,引入自注意力机制,生成代表属性之间关系的关系矩阵;(C)将行人属性关系分为显性关系和隐性关系。显性关系代表先验信息关系,包括层级关系和空间位置关系。隐性关系通过数据驱动的方式形成构建的属性关系。通过S1)提出的属性特征向量和S2)提出的关系矩阵生成方式,生成不同类型的属性关系矩阵;(D)以图卷积的形式充分利用关系矩阵和属性特征向量,进行属性推理预测;(E)将测试集输入到行人属性识别模型中进行识别,对实验结果进行评估。
-