-
公开(公告)号:CN111768268B
公开(公告)日:2022-12-20
申请号:CN202010543185.6
申请日:2020-06-15
Applicant: 北京航空航天大学
Abstract: 本发明公开了一种基于本地化差分隐私的推荐系统,主要的流程为:(1)用户端对其相关的历史购买商品行为数据进行编码,然后使用满足本地化差分隐私的随机扰动算法对其进行扰动,最后将扰动后的数据发送给服务器端;(2)服务器端收集所有扰动后的数据,然后重建用户历史购买行为的相关信息,最后使用图嵌入算法将其映射为低维向量返回给用户端;(3)每个用户端通过最终生成的向量,计算各自推荐的候选集,从而完成在保护隐私情况下的商品推荐。本发明使用了本地化差分隐私保护技术,该系统无需可信第三方作为媒介,保证了每个用户的隐私信息不被第三方窃取,也保证系统最终推荐结果的有用性。
-
公开(公告)号:CN111768268A
公开(公告)日:2020-10-13
申请号:CN202010543185.6
申请日:2020-06-15
Applicant: 北京航空航天大学
Abstract: 本发明公开了一种基于本地化差分隐私的推荐系统,主要的流程为:(1)用户端对其相关的历史购买商品行为数据进行编码,然后使用满足本地化差分隐私的随机扰动算法对其进行扰动,最后将扰动后的数据发送给服务器端;(2)服务器端收集所有扰动后的数据,然后重建用户历史购买行为的相关信息,最后使用图嵌入算法将其映射为低维向量返回给用户端;(3)每个用户端通过最终生成的向量,计算各自推荐的候选集,从而完成在保护隐私情况下的商品推荐。本发明使用了本地化差分隐私保护技术,该系统无需可信第三方作为媒介,保证了每个用户的隐私信息不被第三方窃取,也保证系统最终推荐结果的有用性。
-