一种基于多层特征差异的神经网络持续学习性在线评估方法

    公开(公告)号:CN119886206A

    公开(公告)日:2025-04-25

    申请号:CN202411608475.9

    申请日:2024-11-12

    Abstract: 本发明涉及一种基于多层特征差异的神经网络持续学习性在线评估方法。首先对持续学习过程中被测神经网络每一层的网络参数进行提取,网络参数中包括权重矩阵和偏置向量;然后基于相邻学习任务的权重,针对每一层进行网络参数相似性的提取;紧接着构建长短记忆循环神经模型作为评估模型,以被测网络模型的层深作为时序数据对循环网络评估模型进行训练,评估模型的输入为每一层的被测神经网络的参数相似度,最终输出为被测神经网络当前是否发生遗忘现象;最后,利用训练好的评估模型进行智能神经网络模型的持续学习状态的评估,通过提取当前状态于上一状态的参数相似度参数,输入到循环网络评估模型中,对当前持续学习的状态进行识别评估。

Patent Agency Ranking