一种睡眠纺锤波智能识别方法及系统

    公开(公告)号:CN116035598A

    公开(公告)日:2023-05-02

    申请号:CN202310339701.7

    申请日:2023-04-03

    Abstract: 本发明涉及一种睡眠纺锤波智能识别方法及系统。该方法包括:获取标注的脑电波信号;对获取的标注的脑电波信号按照时间进行分段,得到脑电信号片段;对脑电信号片段进行同步挤压小波变换;将同步挤压小波变换后的一维脑电信号转换为二维时频图;利用二维时频图训练睡眠纺锤波分类识别神经网络;将待识别的脑电波信号进行分段并进行同步挤压小波变换后输入到训练完成后的睡眠纺锤波分级分类识别神经网络,识别出待识别的脑电波信号中是否包含纺锤波信号。本发明利用同步挤压小波变换和ConvNeXt网络的优势,提出一种基于同步挤压小波变换和迁移学习的睡眠纺锤波智能识别方法及系统,能够解决现有技术中存在的鲁棒性差以及效率低等技术问题。

    一种睡眠纺锤波智能识别方法及系统

    公开(公告)号:CN116035598B

    公开(公告)日:2023-06-27

    申请号:CN202310339701.7

    申请日:2023-04-03

    Abstract: 本发明涉及一种睡眠纺锤波智能识别方法及系统。该方法包括:获取标注的脑电波信号;对获取的标注的脑电波信号按照时间进行分段,得到脑电信号片段;对脑电信号片段进行同步挤压小波变换;将同步挤压小波变换后的一维脑电信号转换为二维时频图;利用二维时频图训练睡眠纺锤波分类识别神经网络;将待识别的脑电波信号进行分段并进行同步挤压小波变换后输入到训练完成后的睡眠纺锤波分级分类识别神经网络,识别出待识别的脑电波信号中是否包含纺锤波信号。本发明利用同步挤压小波变换和ConvNeXt网络的优势,提出一种基于同步挤压小波变换和迁移学习的睡眠纺锤波智能识别方法及系统,能够解决现有技术中存在的鲁棒性差以及效率低等技术问题。

Patent Agency Ranking