-
公开(公告)号:CN115239034B
公开(公告)日:2022-11-29
申请号:CN202211169343.1
申请日:2022-09-26
Applicant: 北京科技大学
Abstract: 本发明公开了一种风力发电机叶片早期缺陷预测方法及系统,属于风力发电设备领域。所述方法先收集叶片早中晚期场景的图像,对晚期图像进行人工标注作为反演语义分割训练集样本;将对应的叶片早中期图像集作为模型样本集划分自监督训练集和验证集,并对验证集进行人工标注;构建基网络及早期缺陷自监督学习模型,采用自监督训练集进行训练,得到成熟模型,获得模型权重;构建分割头模型,基网络加载权重,并将基网络与分割头模型进行连接,输入反演语义分割训练集进行训练,输出语义分割标签,得到成熟的下游任务分割模型;获取待预测叶片的早期图像输入下游任务分割模型,输出早期缺陷的位置信息。本发明提高了叶片早期缺陷预测准确度。
-
公开(公告)号:CN115239034A
公开(公告)日:2022-10-25
申请号:CN202211169343.1
申请日:2022-09-26
Applicant: 北京科技大学
Abstract: 本发明公开了一种风力发电机叶片早期缺陷预测方法及系统,属于风力发电设备领域。所述方法先收集叶片早中晚期场景的图像,对晚期图像进行人工标注作为反演语义分割训练集样本;将对应的叶片早中期图像集作为模型样本集划分自监督训练集和验证集,并对验证集进行人工标注;构建基网络及早期缺陷自监督学习模型,采用自监督训练集进行训练,得到成熟模型,获得模型权重;构建分割头模型,基网络加载权重,并将基网络与分割头模型进行连接,输入反演语义分割训练集进行训练,输出语义分割标签,得到成熟的下游任务分割模型;获取待预测叶片的早期图像输入下游任务分割模型,输出早期缺陷的位置信息。本发明提高了叶片早期缺陷预测准确度。
-