-
公开(公告)号:CN104726719B
公开(公告)日:2017-01-25
申请号:CN201510106891.3
申请日:2015-03-11
Applicant: 北京矿冶研究总院
IPC: C22B7/04
CPC classification number: Y02P10/234 , Y02P10/242
Abstract: 本发明公开了一种重金属废渣的洗涤回收方法,首先向重金属废渣中加入一定量的浆化剂,并快速搅拌,对所述废渣进行浆化处理;将浆化处理后的废渣泵入带洗涤功能的压滤机内,并采用去离子水进行淋洗处理,得到含有价金属的洗涤液;将所述洗涤液送入离子交换吸附柱进行吸附处理,并采用离子交换树脂对所述洗涤液中的重金属离子进行富集,得到富集有高浓度重金属离子的酸性脱附液。该方法提高了溶解态重金属的释放速率,减少了洗涤用水体积,提高了洗涤水中的重金属浓度,从而实现了废渣中可溶态重金属的综合利用。
-
公开(公告)号:CN105174527A
公开(公告)日:2015-12-23
申请号:CN201510419815.8
申请日:2015-07-16
Applicant: 北京矿冶研究总院
IPC: C02F9/04
Abstract: 本发明公开了一种对选矿废水进行选择性氧化处理的方法,首先在选矿废水中投加适量的PAM进行絮凝沉淀预处理,去除所述选矿废水中的不溶性污染物;将预处理后的选矿废水从臭氧氧化反应器上部加入到反应器中,并相继通过反应器中的反应材料A和反应材料B;与此同时通过反应器底部的钛纳米微孔曝气盘投加一定量的臭氧;经过反应器处理后的出水直接回用至选矿生产。该方法利用臭氧对选矿废水进行选择性氧化处理,具有良好的选择性氧化作用,可有效的氧化残留的选矿药剂,处理后废水可直接达到选矿要求。
-
公开(公告)号:CN103301819A
公开(公告)日:2013-09-18
申请号:CN201310277020.9
申请日:2013-07-03
Applicant: 北京矿冶研究总院
IPC: B01J20/26 , B01J20/30 , C02F1/28 , C02F101/20
Abstract: 本发明公开了一种去除废水中重金属的纳米吸附剂的制备方法,包括:用常规酸碱处理新树脂的方法对大孔型阳离子交换树脂进行预处理,将预处理后树脂依次用锰(II)盐、铈(III)盐和钛(III)盐溶液进行浸泡,然后用过硫酸钠与NaOH混合溶液进行浸泡氧化,在大孔树脂材料内部发生化学反应生成分散性良好的纳米水合氧化锰和水合氧化钛沉淀颗粒,并在50℃条件下干燥脱水3小时,即制得负载纳米水合氧化锰、水合氧化钛的吸附剂。吸附饱和后的纳米吸附剂采用盐酸进行清洗、浸泡后,可再生重复使用。本发明可对废水中铅、镉、汞、铜、锌、镍等重金属离子进行进一步的深度处理,处理后出水中的相应重金属指标可达到《地表水环境质量标准》III类水标准。
-
公开(公告)号:CN104162404B
公开(公告)日:2017-01-25
申请号:CN201410421804.9
申请日:2014-08-25
Applicant: 北京矿冶研究总院
Abstract: 本发明公开了一种稀土掺杂水合氧化锰的吸附剂制备方法,首先采用摩尔浓度2%~5%的MnSO4·H2O溶液与2%~10%的NaCl溶液配制混合液Ⅰ,向混合液Ⅰ中加入0.1%~0.5%的KMnO4溶液,制得水合二氧化锰晶种混合液;对水合二氧化锰晶种混合液进行稀土掺杂晶粒放大处理;对稀土掺杂水合氧化锰混合液进行沉淀物粒径分级处理,取粒径大于10μm的沉淀物进行压滤处理,得到的吸附剂滤饼;将吸附剂滤饼在50℃~75℃条件下干燥1.5h~3h,至表面无明显水分,得到最终的吸附剂。该吸附剂吸附反应速度快、吸附容量高,从而减少其在废水处理过程中的投加量,降低了废水处理的运行成本。
-
公开(公告)号:CN103301819B
公开(公告)日:2016-01-20
申请号:CN201310277020.9
申请日:2013-07-03
Applicant: 北京矿冶研究总院
IPC: B01J20/26 , B01J20/30 , C02F1/28 , C02F101/20
Abstract: 本发明公开了一种去除废水中重金属的纳米吸附剂的制备方法,包括:用常规酸碱处理新树脂的方法对大孔型阳离子交换树脂进行预处理,将预处理后树脂依次用锰(II)盐、铈(III)盐和钛(III)盐溶液进行浸泡,然后用过硫酸钠与NaOH混合溶液进行浸泡氧化,在大孔树脂材料内部发生化学反应生成分散性良好的纳米水合氧化锰和水合氧化钛沉淀颗粒,并在50℃条件下干燥脱水3小时,即制得负载纳米水合氧化锰、水合氧化钛的吸附剂。吸附饱和后的纳米吸附剂采用盐酸进行清洗、浸泡后,可再生重复使用。本发明可对废水中铅、镉、汞、铜、锌、镍等重金属离子进行进一步的深度处理,处理后出水中的相应重金属指标可达到《地表水环境质量标准》III类水标准。
-
公开(公告)号:CN104162404A
公开(公告)日:2014-11-26
申请号:CN201410421804.9
申请日:2014-08-25
Applicant: 北京矿冶研究总院
Abstract: 本发明公开了一种稀土掺杂水合氧化锰的吸附剂制备方法,首先采用摩尔浓度2%~5%的MnSO4·H2O溶液与2%~10%的NaCl溶液配制混合液Ⅰ,向混合液Ⅰ中加入0.1%~0.5%的KMnO4溶液,制得水合二氧化锰晶种混合液;对水合二氧化锰晶种混合液进行稀土掺杂晶粒放大处理;对稀土掺杂水合氧化锰混合液进行沉淀物粒径分级处理,取粒径大于10μm的沉淀物进行压滤处理,得到的吸附剂滤饼;将吸附剂滤饼在50℃~75℃条件下干燥1.5h~3h,至表面无明显水分,得到最终的吸附剂。该吸附剂吸附反应速度快、吸附容量高,从而减少其在废水处理过程中的投加量,降低了废水处理的运行成本。
-
公开(公告)号:CN103341353B
公开(公告)日:2015-04-15
申请号:CN201310325824.1
申请日:2013-07-30
Applicant: 北京矿冶研究总院
Abstract: 一种去除废水中砷、锑、氟的纳米吸附剂及其制备方法和再生方法,属于废水处理技术领域。本发明先用常规酸碱处理新树脂的方法对大孔型阳离子交换树脂进行预处理后,依次进行以下处理:用硝酸铈铵和高铁酸盐溶液进行浸泡,用亚铁盐和盐酸的混合溶液进行浸泡还原,用氢氧化钠溶液进行浸泡后,在大孔树脂材料内部发生化学反应生成纳米水合氧化铁和水合氧化铈沉淀颗粒,并在50℃条件下干燥脱水3小时,即制得负载纳米水合氧化铁和水合氧化铈的吸附剂。本发明的吸附剂可以消除重金属废水中的砷、锑、氟等离子,具有良好的选择性,并且吸附饱和后的负载纳米水合氧化铁、氧化铈的吸附剂还能够再生使用。
-
公开(公告)号:CN103342429B
公开(公告)日:2014-10-08
申请号:CN201310325852.3
申请日:2013-07-30
Applicant: 北京矿冶研究总院
Abstract: 本发明公开了一种污酸中的有价金属回收及处理回用方法,包括在污酸中投加石灰和混凝剂,再通过沉淀膜分离后获得浓缩水和透过水;在浓缩水中投加石灰、混凝剂、次氯酸钠和氯化铁,然后进行固液分离,在分离出的上清液投加硫化钠和混凝剂,再对上清液进行沉淀固液分离,分离出的硫化铜废渣可进行配料冶炼,分离出的液体与透过水合并处理;在合并处理的废水中投加石灰和混凝剂,然后进行沉淀固液分离,再在分离出的液体中投加次氯酸钠、氯化铁和混凝剂,最后进行沉淀固液分离,制得用于回用或达标排放的废水。本发明对经过预处理的污酸通过纳滤处理、硫化回收和深度处理,有效的回收了废水中的有价金属,减少了危险废物的产生量,处理后的出水硬度较低,可以回用或达标排放。
-
公开(公告)号:CN103342429A
公开(公告)日:2013-10-09
申请号:CN201310325852.3
申请日:2013-07-30
Applicant: 北京矿冶研究总院
Abstract: 本发明公开了一种污酸中的有价金属回收及处理回用方法,包括在污酸中投加石灰和混凝剂,再通过沉淀膜分离后获得浓缩水和透过水;在浓缩水中投加石灰、混凝剂、次氯酸钠和氯化铁,然后进行固液分离,在分离出的上清液投加硫化钠和混凝剂,再对上清液进行沉淀固液分离,分离出的硫化铜废渣可进行配料冶炼,分离出的液体与透过水合并处理;在合并处理的废水中投加石灰和混凝剂,然后进行沉淀固液分离,再在分离出的液体中投加次氯酸钠、氯化铁和混凝剂,最后进行沉淀固液分离,制得用于回用或达标排放的废水。本发明对经过预处理的污酸通过纳滤处理、硫化回收和深度处理,有效的回收了废水中的有价金属,减少了危险废物的产生量,处理后的出水硬度较低,可以回用或达标排放。
-
公开(公告)号:CN104692561B
公开(公告)日:2017-08-04
申请号:CN201510106618.0
申请日:2015-03-11
Applicant: 北京矿冶研究总院
IPC: C02F9/04
Abstract: 本发明公开了一种含铊废水的深度处理方法,首先向含铊废水中分级投加硫化钠与硫化铁晶种,使所述废水中的高浓度重金属形成硫化物沉淀,初步降低所述废水中的重金属浓度;向硫化沉淀处理之后的废水中,投加一定量的高级氧化剂,对废水中的铊进行氧化处理,改变废水中铊的形态;将高级氧化处理之后的废水输送至填装有纳米水合氧化锰吸附剂的吸附塔,通过所述纳米水合氧化锰吸附剂的强吸附能力,将废水中残留的微量重金属进一步深度去除。该处理方法提高了除铊效率,以及后端深度吸附处理的处理效率,不仅有利于含铊废水的处理后回用,而且对于重金属环境容量低的地区的重金属污染物总量减排具有重要意义。
-
-
-
-
-
-
-
-
-