基于低分辨率先验光谱图像区域分割的自适应编码方法

    公开(公告)号:CN112819909B

    公开(公告)日:2023-07-25

    申请号:CN202110116351.9

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于低分辨率先验光谱图像区域分割的自适应编码方法,包括利用压缩光谱成像系统加载快照式编码模板,获取场景的低分辨率场景信息;利用分割‑合并方法对低分辨率场景信息进行分割,获取低分辨率场景信息的分割结果;在低分辨率自适应编码框架下,利用所述分割结果生成基于区域的阈值矩阵,结合对原光谱图像的近似估计,生成基于区域的自适应编码矩阵;利用自适应编码矩阵对场景进行压缩观测,利用重构算法从压缩观测结果重建出场景的场景信息。本发明无需充足的高分辨率先验信息,所采用的分割方法挖掘了低分辨率场景信息的空间光谱相关性,以区域为单位生成自适应编码,相比传统编码方式,提高了重构光谱图像的质量。

    基于互补压缩编码的双通道可调谐高光谱成像仪和方法

    公开(公告)号:CN112665720A

    公开(公告)日:2021-04-16

    申请号:CN202011590415.0

    申请日:2020-12-29

    Abstract: 本发明公开了一种基于互补压缩编码的双通道可调谐高光谱成像仪和方法。成像仪包括成像系统、反射式空间光调制器、第一成像光路、第二成像光路和计算控制中心。场景信息在计算控制中心的协调下,经反射式空间光调制器以互补的方式空间编码,经第一成像光路和第二成像光路分别对信号进行光谱滤波、成像;计算控制中心根据第一成像光路得到的图像和第二成像光路得到的图像重构出高光谱图像。本发明利用反射式空间光调制器的编码特性,对两条光路同时进行互补编码,提高了对场景信息的光能利用率,提高了编码效率,并且,允许任选两个光谱通带的LCTF装配到成像仪,对于滤光过程,可在两路成像光路各选一个感兴趣波段进行观测。

    液晶高光谱计算成像系统的三维数据重构方法

    公开(公告)号:CN112229514A

    公开(公告)日:2021-01-15

    申请号:CN202011054740.5

    申请日:2020-09-27

    Abstract: 本发明提供一种液晶高光谱计算成像系统的三维数据重构方法,搭建了一个适用于液晶高光谱计算成像系统的卷积神经网络,将计算成像系统获取的压缩观测结果和系统响应共同作为网络输入,经过多个隐藏层,最终输出重构后的高分辨率三维数据;其中,系统响应包括系统的空间响应和光谱响应,分别表示系统对入射场景的空间和光谱编码作用。本发明在卷积神经网络的框架下进行压缩观测数据的计算重构,同时考虑压缩数据和系统响应,在训练数据足够多的情况下,该网络可以适应不同的编码模板和各种类型的计算光谱成像系统,快速准确地获取重构后的三维数据。

    斯托克斯参量分块的全偏振高光谱图像压缩重构方法

    公开(公告)号:CN111998945A

    公开(公告)日:2020-11-27

    申请号:CN202010846546.4

    申请日:2020-08-21

    Abstract: 本发明公开了一种斯托克斯参量分块的全偏振高光谱图像压缩重构方法,能够增加偏振压缩的自由度,提高偏振重构的针对性和重构精度,缩短整体重构用时。采用四分之一波片与液晶可调滤波器组合将待测全偏振高光谱图像成像于探测器,选取四分之一波片快轴角度和液晶可调滤波器入射面角度实现不同全偏振调制方式。对于1种快轴角度和2种入射面角度的组合,利用求和法求解第一个斯托克斯参量S0,再重构后三个斯托克斯参量S1S2S3;对于2~3种快轴角度和1种入射面角度的组合,利用求差法重构S1S2S3,再求解S0;对于1~3种快轴角度和1种入射面角度的组合,利用缩放法重构S0,再重构S1S2S3。最终获得重构的全偏振高光谱图像。

    偏振光谱特征融合的水中氨氮检测方法

    公开(公告)号:CN114965293B

    公开(公告)日:2025-05-09

    申请号:CN202210504116.3

    申请日:2022-05-10

    Abstract: 本发明提供了一种偏振光谱特征融合的水中氨氮检测方法,用于偏振光谱特征融合系统,系统包括光源、反射镜、四分之一波片、线偏振片、光纤透镜和光纤光谱仪;方法包括:C1:通过系统基于目标水样,采集偏振调制光谱;C2:解调目标水样反射光波的四个斯托克斯参量光谱;C3:选取不同数量的偏振调制光谱和斯托克斯参量光谱分别进行光谱特征融合;C4:基于氨氮浓度不同的目标水样的特征融合光谱,进行光谱分类。本发明实现了基于偏振特征融合光谱检测水中氨氮,通过光与物质之间的相互作用,无需使用辅助试剂,准确的检测水中氨氮浓度。

    液晶高光谱计算成像系统的三维数据重构方法

    公开(公告)号:CN112229514B

    公开(公告)日:2023-04-18

    申请号:CN202011054740.5

    申请日:2020-09-27

    Abstract: 本发明提供一种液晶高光谱计算成像系统的三维数据重构方法,搭建了一个适用于液晶高光谱计算成像系统的卷积神经网络,将计算成像系统获取的压缩观测结果和系统响应共同作为网络输入,经过多个隐藏层,最终输出重构后的高分辨率三维数据;其中,系统响应包括系统的空间响应和光谱响应,分别表示系统对入射场景的空间和光谱编码作用。本发明在卷积神经网络的框架下进行压缩观测数据的计算重构,同时考虑压缩数据和系统响应,在训练数据足够多的情况下,该网络可以适应不同的编码模板和各种类型的计算光谱成像系统,快速准确地获取重构后的三维数据。

    一种基于空谱联合的高光谱异常目标检测方法和系统

    公开(公告)号:CN113327231B

    公开(公告)日:2022-10-14

    申请号:CN202110589580.2

    申请日:2021-05-28

    Abstract: 本发明公开了一种基于空谱联合的高光谱异常目标检测方法和系统,包括:对原始高光谱图像进行降维处理;采用自编码网络提取降维后的图像中的背景空间特征并进行重构;将重构后的空间域图像和降维后的图像进行差值运算得到第一残差图像,根据第一残差图像得到空间域检测结果;采用对抗自编码网络提取原始高光谱图像中的背景光谱特征并进行重构;将重构后的光谱域图像与原始高光谱图像进行差值运算,得到第二残差图像,根据第二残差图像得到光谱域检测结果;加权融合空间域检测结果和光谱域检测结果,得到异常目标检测结果。本发明具有强大的特征提取和表示能力,采取了样本数量扩充方案解决训练数据匮乏的问题,具有较好的检测精度。

    基于液晶高光谱计算成像系统的三维自适应压缩重构方法

    公开(公告)号:CN113008370B

    公开(公告)日:2022-06-14

    申请号:CN202110228167.3

    申请日:2021-03-02

    Abstract: 本发明公开了一种基于液晶高光谱计算成像系统的三维自适应压缩重构方法,液晶高光谱计算成像系统包括LCTF、编码孔径、探测器和光学透镜。方法包括:采集LCTF在各光谱通道下的低分辨率图像,获得低分辨率数据立方体;进行插值操作,快速得到高分辨率的高光谱数据立方体;利用自适应编码规则,基于高光谱数据立方体生成各滤波波段所需的自适应编码孔径;通过自适应编码孔径分别获取各光谱通道下的压缩测量值;基于压缩感知理论,根据系统的观测矩阵、稀疏基和压缩测量值,重构出高分辨率的目标光谱数据立方体。本发明利用先验信息设计自适应编码孔径和空‑谱联合字典,使得本发明对目标场景有很强的适应性,能够提升成像质量。

    基于低分辨率先验光谱图像区域分割的自适应编码方法

    公开(公告)号:CN112819909A

    公开(公告)日:2021-05-18

    申请号:CN202110116351.9

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于低分辨率先验光谱图像区域分割的自适应编码方法,包括利用压缩光谱成像系统加载快照式编码模板,获取场景的低分辨率场景信息;利用分割‑合并方法对低分辨率场景信息进行分割,获取低分辨率场景信息的分割结果;在低分辨率自适应编码框架下,利用所述分割结果生成基于区域的阈值矩阵,结合对原光谱图像的近似估计,生成基于区域的自适应编码矩阵;利用自适应编码矩阵对场景进行压缩观测,利用重构算法从压缩观测结果重建出场景的场景信息。本发明无需充足的高分辨率先验信息,所采用的分割方法挖掘了低分辨率场景信息的空间光谱相关性,以区域为单位生成自适应编码,相比传统编码方式,提高了重构光谱图像的质量。

    一种基于低分辨率先验信息的自适应编码方法

    公开(公告)号:CN112785662A

    公开(公告)日:2021-05-11

    申请号:CN202110117326.2

    申请日:2021-01-28

    Abstract: 本发明公开了一种基于低分辨率先验信息的自适应编码方法,包括:利用低分辨率图像整体的灰度值和方差,估计原光谱图像对应各图像块的均值和方差,所述图像块为原光谱图像分别与低分辨率图像各点对应的场景信息子区域;根据各所述图像块的均值和方差,计算原光谱图像场景信息的图像块的阈值分布。利用所述低分辨率图像构建原光谱图像的近似图像。基于原光谱图像的近似图像及其对应的阈值分布,以最大化观测矩阵和稀疏矩阵之间的相关性为设计目的,利用抖色方法生成自适应编码矩阵。本发明无需重构过程提供高分辨率先验信息,利用压缩光谱成像系统中所能获取的低分辨率光谱信息即可生成自适应编码矩阵,也无需增加额外的探测过程和探测器件。

Patent Agency Ranking