基于去中心化安全聚合的轻量级联邦学习隐私保护方法

    公开(公告)号:CN113806768A

    公开(公告)日:2021-12-17

    申请号:CN202110966055.8

    申请日:2021-08-23

    Abstract: 本发明涉及一种基于去中心化安全聚合的轻量级联邦学习隐私保护方法,属于数据隐私保护技术领域。在用户侧利用边缘节点和联盟区块链构建一个安全的去中心化聚合平台,在该平台上协同进行聚合过程。每个用户对局部模型进行分割,并将其分别发送到每个连接的边缘节点。每个用户生成一个全局随机数,并进行分割,分别共享到与其连接的边缘节点。然后,所有边缘节点进行安全去中心化聚合,每个用户会收到加有其自定义的全局随机数扰动的全局模型,参与聚合的边缘节点无法得知全局模型,而每个用户都能够去除添加的扰动,得到原有的全局模型。本方法无需加密操作就能实现隐私保护,在计算效率、模型准确性和对成员推理攻击的隐私保护方面优于现有技术。

Patent Agency Ranking