一种基于情感分析和隐马尔科夫模型融合的股市预测方法

    公开(公告)号:CN103778215A

    公开(公告)日:2014-05-07

    申请号:CN201410023154.2

    申请日:2014-01-17

    CPC classification number: G06F17/30705 G06F17/30864 G06Q10/04 G06Q40/04

    Abstract: 本发明涉及一种基于情感分析和隐马尔科夫模型融合的股市预测方法,包括以下步骤:信息采集:针对新浪网财经新闻网页,利用网络爬虫Heritrix采集财经新闻网页;信息预处理:对财经新闻网页进行正文抽取、分词、词性标注,以及停用词和标点符号过滤;语料构建:构建股票领域相关语料库;情感分析:对股票领域相关语料进行情感分析;股市技术分析:获取股市技术分析指标;采用基于情感分析和隐马尔科夫模型融合的预测方法预测股市走向。本发明通过利用财经新闻网页中的情感倾向性信息,提高了股市预测的准确性,在倾向性分析、主题检测、股市预测、网络内容监控等领域具有广阔的应用前景。

    一种基于情感分析和隐马尔科夫模型融合的股市预测方法

    公开(公告)号:CN103778215B

    公开(公告)日:2016-08-17

    申请号:CN201410023154.2

    申请日:2014-01-17

    Abstract: 本发明涉及一种基于情感分析和隐马尔科夫模型融合的股市预测方法,包括以下步骤:信息采集:针对新浪网财经新闻网页,利用网络爬虫Heritrix采集财经新闻网页;信息预处理:对财经新闻网页进行正文抽取、分词、词性标注,以及停用词和标点符号过滤;语料构建:构建股票领域相关语料库;情感分析:对股票领域相关语料进行情感分析;股市技术分析:获取股市技术分析指标;采用基于情感分析和隐马尔科夫模型融合的预测方法预测股市走向。本发明通过利用财经新闻网页中的情感倾向性信息,提高了股市预测的准确性,在倾向性分析、主题检测、股市预测、网络内容监控等领域具有广阔的应用前景。

Patent Agency Ranking