一种融合用户时间特征和个性特征的数据特征提取方法

    公开(公告)号:CN111506835B

    公开(公告)日:2022-12-23

    申请号:CN202010306982.2

    申请日:2020-04-17

    Abstract: 本发明涉及一种融合用户时间特征和个性特征的数据特征提取方法,属于人工智能技术领域;本发明基于多用户的批量时序数据,通过时间卷积神经网络建模数据的序列关系,同时引入时间通道和个性特征通道注意力机制自动选择与预测下一个数据点所密切相关的数据特征,从而获取用户的综合数据特征,在此基础上,可以利用现有神经网络模型提供基于用户历史习惯的相关服务。对比现有技术,本发明有效解决了传统神经网络模型在使用数据时效率低下的问题,通过时间通道和个性特征通道两种注意力机制,强调了时间信息和用户个性对于特征提取的重要性,提高了特征提取的有效性。

    一种融合用户时间特征和个性特征的数据特征提取方法

    公开(公告)号:CN111506835A

    公开(公告)日:2020-08-07

    申请号:CN202010306982.2

    申请日:2020-04-17

    Abstract: 本发明涉及一种融合用户时间特征和个性特征的数据特征提取方法,属于人工智能技术领域;本发明基于多用户的批量时序数据,通过时间卷积神经网络建模数据的序列关系,同时引入时间通道和个性特征通道注意力机制自动选择与预测下一个数据点所密切相关的数据特征,从而获取用户的综合数据特征,在此基础上,可以利用现有神经网络模型提供基于用户历史习惯的相关服务。对比现有技术,本发明有效解决了传统神经网络模型在使用数据时效率低下的问题,通过时间通道和个性特征通道两种注意力机制,强调了时间信息和用户个性对于特征提取的重要性,提高了特征提取的有效性。

Patent Agency Ranking