一种基于图信息增强的实体关系抽取方法

    公开(公告)号:CN111931506B

    公开(公告)日:2023-01-10

    申请号:CN202010823187.0

    申请日:2020-08-17

    Abstract: 本发明公开了一种基于图信息增强的实体关系抽取方法,属于信息抽取和大数据挖掘技术领域。本发明包括如下步骤:1)训练集文本数据处理;2)将训练集中的实体关系三元组集合转换为关系图;3)构建训练集中句子的初始向量表示;4)基于图神经网络模型生成图中节点即实体的向量表示;5)构建训练集中句子的向量表示,由句子初始向量和实体向量融合生成句子向量,训练全连接网络;6)依据前述1)到5)抽取测试集中实体的关系。本发明通过预训练模型和图神经网络模型生成句子向量,引入句子分类损失的权重训练方法,提高了实体关系抽取的性能,在信息检索、文本分类、问答系统等领域具有广阔的应用前景。

    一种基于图信息增强的实体关系抽取方法

    公开(公告)号:CN111931506A

    公开(公告)日:2020-11-13

    申请号:CN202010823187.0

    申请日:2020-08-17

    Abstract: 本发明公开了一种基于图信息增强的实体关系抽取方法,属于信息抽取和大数据挖掘技术领域。本发明包括如下步骤:1)训练集文本数据处理;2)将训练集中的实体关系三元组集合转换为关系图;3)构建训练集中句子的初始向量表示;4)基于图神经网络模型生成图中节点即实体的向量表示;5)构建训练集中句子的向量表示,由句子初始向量和实体向量融合生成句子向量,训练全连接网络;6)依据前述1)到5)抽取测试集中实体的关系。本发明通过预训练模型和图神经网络模型生成句子向量,引入句子分类损失的权重训练方法,提高了实体关系抽取的性能,在信息检索、文本分类、问答系统等领域具有广阔的应用前景。

Patent Agency Ranking