-
公开(公告)号:CN111652732B
公开(公告)日:2023-05-12
申请号:CN202010460583.1
申请日:2020-05-26
Applicant: 北京理工大学
Abstract: 本发明涉及一种基于交易图匹配的比特币异常交易实体识别方法,属于区块链应用安全技术领域。所述方法,包含:1)处理比特币历史交易详细数据并进行地址聚类,构建地址集群数据集;2)基于交易输入及输出地址、交易时间戳和交易金额提取比特币异常交易实体输入和输出特征;3)构建比特币历史交易详细信息交易图;4)构建比特币异常交易实体的输入交易模式和输出交易模式;5)在3)构建的交易图中,利用子图匹配根据4)的比特币异常交易实体交易模式,分别对比特币异常交易实体的输入和输出交易模式进行匹配检测,从而识别出比特币异常交易实体。所述方法利用子图匹配使得异常交易实体直观且有效,协助降低比特币投资者的市场投资风险。
-
公开(公告)号:CN111652732A
公开(公告)日:2020-09-11
申请号:CN202010460583.1
申请日:2020-05-26
Applicant: 北京理工大学
Abstract: 本发明涉及一种基于交易图匹配的比特币异常交易实体识别方法,属于区块链应用安全技术领域。所述方法,包含:1)处理比特币历史交易详细数据并进行地址聚类,构建地址集群数据集;2)基于交易输入及输出地址、交易时间戳和交易金额提取比特币异常交易实体输入和输出特征;3)构建比特币历史交易详细信息交易图;4)构建比特币异常交易实体的输入交易模式和输出交易模式;5)在3)构建的交易图中,利用子图匹配根据4)的比特币异常交易实体交易模式,分别对比特币异常交易实体的输入和输出交易模式进行匹配检测,从而识别出比特币异常交易实体。所述方法利用子图匹配使得异常交易实体直观且有效,协助降低比特币投资者的市场投资风险。
-