一种基于轻量化扩散模型去噪网络的高光谱图像分类方法

    公开(公告)号:CN118411604A

    公开(公告)日:2024-07-30

    申请号:CN202410503735.X

    申请日:2024-04-25

    Abstract: 本发明提供了一种基于轻量化扩散模型去噪网络的高光谱图像分类方法,本发明基于对原始高光谱图像提取PCA分量,并将PCA图像块和原始高光谱图像切割成的图像块作为输入至扩散模型进行去噪网络训练;并对扩散模型解码器简化后,利用输入预训练解码器生成需要的高光谱图像块样本,增加原先数量较少的类别的样本数量;利用分类方法对生成样本的合理性进行测试。相较于传统的高光谱图像分类方法,本方案通过增加样本数量和提升样本类间平衡度的数据扩充方法从而提升高光谱图像分类准确度,并且利用PCA图像块和加噪图像块对扩散模型解码器进行预训练,使得解码器能够从高光谱图像中充分获取全局空间和光谱信息,从而生成更为真实的高光谱图像,提高生成样本真实性。

Patent Agency Ranking