-
公开(公告)号:CN115063597B
公开(公告)日:2024-07-26
申请号:CN202210809485.3
申请日:2022-07-11
Applicant: 北京理工大学
Abstract: 一种基于类脑学习的图像识别方法,对原始图片数据进行预处理得到输入向量;建立脉冲神经网络模型进行学习,模型包括输入层、类脑学习算子和输出层;先对所述输入向量进行脉冲时序编码得到脉冲神经网络的输入数据,再将所述输入数据输入到脉冲神经网络的输入层,然后通过类脑学习算子学习输入向量的特征,最后将脉冲神经网络的输出层最先激发的脉冲神经元作为网络识别的类别,经过多次训练学习后,得到最后的识别网络;将待识别的原始图片数据进行预处理,用识别网络进行图片识别。本发明在脉冲神经网络中使用类脑学习算子,优化了脉冲神经网络计算能耗高,可解释性差的缺陷,符合对类脑网络的预期。
-
公开(公告)号:CN115063597A
公开(公告)日:2022-09-16
申请号:CN202210809485.3
申请日:2022-07-11
Applicant: 北京理工大学
Abstract: 一种基于类脑学习的图像识别方法,对原始图片数据进行预处理得到输入向量;建立脉冲神经网络模型进行学习,模型包括输入层、类脑学习算子和输出层;先对所述输入向量进行脉冲时序编码得到脉冲神经网络的输入数据,再将所述输入数据输入到脉冲神经网络的输入层,然后通过类脑学习算子学习输入向量的特征,最后将脉冲神经网络的输出层最先激发的脉冲神经元作为网络识别的类别,经过多次训练学习后,得到最后的识别网络;将待识别的原始图片数据进行预处理,用识别网络进行图片识别。本发明在脉冲神经网络中使用类脑学习算子,优化了脉冲神经网络计算能耗高,可解释性差的缺陷,符合对类脑网络的预期。
-