-
公开(公告)号:CN113255225A
公开(公告)日:2021-08-13
申请号:CN202110617467.0
申请日:2021-05-28
Applicant: 北京理工大学
Abstract: 本发明涉及少样本元提升学习的列车运动状态估计方法,属于计算机与信息科学技术领域。主要为解决现有的列车运动状态建模方法无论是物理模型或是机器学习模型,均存在高成本建模问题,难以针对特定列车实现模型在线持续自适应以精确仿真,存在系统性仿真误差,而且难以满足列车自动驾驶系统的实时仿真等应用需求问题。本发明首先基于元数据采用元梯度提升学习算法建立模型,然后面向新任务,基于少量数据采用任务梯度提升学习算法,完成任务模型学习,实现对新列车的快速低成本精确仿真。结果表明本发明能较为准确的估计的列车运动状态,既减少了模型的训练成本,又提高了列车运动状态估计的精确度。
-
公开(公告)号:CN113255225B
公开(公告)日:2022-09-20
申请号:CN202110617467.0
申请日:2021-05-28
Applicant: 北京理工大学
Abstract: 本发明涉及少样本元提升学习的列车运动状态估计方法,属于计算机与信息科学技术领域。主要为解决现有的列车运动状态建模方法无论是物理模型或是机器学习模型,均存在高成本建模问题,难以针对特定列车实现模型在线持续自适应以精确仿真,存在系统性仿真误差,而且难以满足列车自动驾驶系统的实时仿真等应用需求问题。本发明首先基于元数据采用元梯度提升学习算法建立模型,然后面向新任务,基于少量数据采用任务梯度提升学习算法,完成任务模型学习,实现对新列车的快速低成本精确仿真。结果表明本发明能较为准确的估计的列车运动状态,既减少了模型的训练成本,又提高了列车运动状态估计的精确度。
-
公开(公告)号:CN115759282A
公开(公告)日:2023-03-07
申请号:CN202211322834.5
申请日:2022-10-27
Applicant: 北京理工大学
Abstract: 本发明涉及应用多代价函数的系统异构联邦学习效率提升方法,属于计算机与信息科学技术领域。本发明首先根据建模任务设置初始训练参数,确定参与客户端并进行联邦训练;其次,在新一轮训练前根据客户端数据量、计算性能及通信性能、在当前服务器等待时间内训练完成情况动态构建客户端空闲代价函数和终止代价函数;然后,遍历服务器等待时间的可能取值,最小化所有客户端总代价得到最优等待时间,进而更新训练参数并调整参与客户端;最后,通过多轮联邦训练达到全局模型准确率要求。本发明提出参与客户端的空闲代价和终止代价函数计算方法,将服务器固定的等待时间进行动态调整,有效提升了联邦学习训练效率。
-
-