-
公开(公告)号:CN118859952A
公开(公告)日:2024-10-29
申请号:CN202410901603.2
申请日:2024-07-05
Applicant: 北京理工大学
IPC: G05D1/43 , G05D1/65 , G05D1/644 , G05D1/648 , G05D109/10
Abstract: 本发明公开了一种基于元强化学习的多机器人动态任务规划方法,涉及机器人系统任务调度领域,S1:建立多个具有代表性的任务规划场景的数学模型;S2:应用元强化学习方法,在步骤S1中建立的任务规划场景中进行预训练,得到通用的任务规划算法参数;S3:建立目标任务规划场景的数学模型;S4:应用深度强化学习方法,基于步骤S2中得到的算法参数进行微调,得到适合目标场景的最优任务规划方法。本发明设计了一种基于元强化学习的任务规划算法,在任务无法预先确定的动态任务规划场景中,能在较短时间内获得效率较高的任务规划方案,且在场景发生变化时,能在少次更新后达到与原先持平的性能水平,极大地提高了算法对动态环境的适应能力。