一种在线资源相关信息抽取的知识图谱生成方法

    公开(公告)号:CN112287119B

    公开(公告)日:2022-10-18

    申请号:CN202011193522.X

    申请日:2020-10-30

    Inventor: 冯冲 赵赫 唐雨馨

    Abstract: 本发明提供了一种在线资源相关信息抽取的知识图谱生成方法,属于自然语言处理信息抽取技术领域。所述方法包括:在输入的在线资源引用句子上枚举生成候选span,基于BERT编码器学习句子中的token表示进而得到每个候选span的表示,从而将实体抽取和关系抽取两个任务转化为基于span表示的分类计算问题,将两个任务的目标函数通过加权得到联合目标函数,进而利用多任务学习策略进行联合训练。通过将训练好的信息抽取模型应用在大规模的科技文献语料中,生成在线资源的知识图谱。该方法解决了实体和关系抽取对在线资源属性描述刻画不足的问题,减少了构建在线资源知识图谱的人工成本,提高了知识图谱生成效率。

    一种在线资源相关信息抽取的知识图谱生成方法

    公开(公告)号:CN112287119A

    公开(公告)日:2021-01-29

    申请号:CN202011193522.X

    申请日:2020-10-30

    Inventor: 冯冲 赵赫 唐雨馨

    Abstract: 本发明提供了一种在线资源相关信息抽取的知识图谱生成方法,属于自然语言处理信息抽取技术领域。所述方法包括:在输入的在线资源引用句子上枚举生成候选span,基于BERT编码器学习句子中的token表示进而得到每个候选span的表示,从而将实体抽取和关系抽取两个任务转化为基于span表示的分类计算问题,将两个任务的目标函数通过加权得到联合目标函数,进而利用多任务学习策略进行联合训练。通过将训练好的信息抽取模型应用在大规模的科技文献语料中,生成在线资源的知识图谱。该方法解决了实体和关系抽取对在线资源属性描述刻画不足的问题,减少了构建在线资源知识图谱的人工成本,提高了知识图谱生成效率。

Patent Agency Ranking