一种多物理场约束的锂离子电池智能快速充电方法

    公开(公告)号:CN112018465B

    公开(公告)日:2021-01-29

    申请号:CN202011087624.3

    申请日:2020-10-13

    Abstract: 本发明公开了一种多物理场约束的锂离子电池智能快速充电方法,包括以下步骤:S1.开展锂离子电池测试,建立锂离子电池电热耦合模型和老化模型;S2.定义动作空间和奖励函数,定义优先经验回放池;S3.设定离线训练场景,获取初始时刻状态变量,利用策略网络获取当前状态下的动作变量,并扩大动作选取范围;S4.生成充电动作、电池状态转移、奖励值并记录于经验池,进行DDPG网络的同步更新;S5.循环执行S3‑S4,直至策略网络和价值网络收敛,导出策略网络成为深度强化学习(DRL)快速充电策略;S6.估计强化学习状态空间内的各个变量;S7.确定当前时刻的最优充电动作。本发明兼顾充电速度、电池安全与寿命衰减抑制,训练后策略计算复杂度低,实时应用具有优势。

    一种多物理场约束的锂离子电池智能快速充电方法

    公开(公告)号:CN112018465A

    公开(公告)日:2020-12-01

    申请号:CN202011087624.3

    申请日:2020-10-13

    Abstract: 本发明公开了一种多物理场约束的锂离子电池智能快速充电方法,包括以下步骤:S1.开展锂离子电池测试,建立锂离子电池电热耦合模型和老化模型;S2.定义动作空间和奖励函数,定义优先经验回放池;S3.设定离线训练场景,获取初始时刻状态变量,利用策略网络获取当前状态下的动作变量,并扩大动作选取范围;S4.生成充电动作、电池状态转移、奖励值并记录于经验池,进行DDPG网络的同步更新;S5.循环执行S3-S4,直至策略网络和价值网络收敛,导出策略网络成为深度强化学习(DRL)快速充电策略;S6.估计强化学习状态空间内的各个变量;S7.确定当前时刻的最优充电动作。本发明兼顾充电速度、电池安全与寿命衰减抑制,训练后策略计算复杂度低,实时应用具有优势。

Patent Agency Ranking