-
公开(公告)号:CN109711381A
公开(公告)日:2019-05-03
申请号:CN201910007003.0
申请日:2019-01-04
Applicant: 北京环境特性研究所
Abstract: 本发明涉及一种遥感图像的目标识别方法,其获取训练遥感图像,以及,获取与所述训练遥感图像对应的标准识别结果;对预设神经网络进行优化,获取优化神经网络;其中,所述优化神经网络具有至少两个不同尺度的用于检测图像的感知域;根据所述训练遥感图像和所述标准识别结果,训练所述优化神经网络,得到训练神经网络;将待识别的遥感图像输入所述训练神经网络,得到所述遥感图像的目标识别结果;能够有效降低成本,并且能够对遥感图像实时检测,且精度较高。
-
公开(公告)号:CN110852261B
公开(公告)日:2022-06-17
申请号:CN201911090281.3
申请日:2019-11-08
Applicant: 北京环境特性研究所
IPC: G06V20/13 , G06V20/40 , G06K9/62 , G06V10/764 , G06V10/80
Abstract: 本申请涉及一种目标检测方法、装置、电子设备和计算机可读存储介质,方法包括:获取待检测图像,提取待检测图像的共享特征图;检测共享特征图中的多个关键点;每一关键点归属于一种物体类别;将共享特征图划分为多个区域,分别提取各个区域的区域特征;基于各个区域特征获取多个关键点中每两个关键点之间的关联编码;基于各个关联编码和检测得到的关键点,获取多个物体类别的类别概率;将最大的类别概率对应的物体类别确定为检测目标的类别。本申请提供的目标检测方法可以提高对目标检测的准确率。
-
公开(公告)号:CN109711381B
公开(公告)日:2021-03-23
申请号:CN201910007003.0
申请日:2019-01-04
Applicant: 北京环境特性研究所
Abstract: 本发明涉及一种遥感图像的目标识别方法,其获取训练遥感图像,以及,获取与所述训练遥感图像对应的标准识别结果;对预设神经网络进行优化,获取优化神经网络;其中,所述优化神经网络具有至少两个不同尺度的用于检测图像的感知域;根据所述训练遥感图像和所述标准识别结果,训练所述优化神经网络,得到训练神经网络;将待识别的遥感图像输入所述训练神经网络,得到所述遥感图像的目标识别结果;能够有效降低成本,并且能够对遥感图像实时检测,且精度较高。
-
公开(公告)号:CN110852261A
公开(公告)日:2020-02-28
申请号:CN201911090281.3
申请日:2019-11-08
Applicant: 北京环境特性研究所
Abstract: 本申请涉及一种目标检测方法、装置、电子设备和计算机可读存储介质,方法包括:获取待检测图像,提取待检测图像的共享特征图;检测共享特征图中的多个关键点;每一关键点归属于一种物体类别;将共享特征图划分为多个区域,分别提取各个区域的区域特征;基于各个区域特征获取多个关键点中每两个关键点之间的关联编码;基于各个关联编码和检测得到的关键点,获取多个物体类别的类别概率;将最大的类别概率对应的物体类别确定为检测目标的类别。本申请提供的目标检测方法可以提高对目标检测的准确率。
-
-
-