-
公开(公告)号:CN117912116B
公开(公告)日:2024-07-02
申请号:CN202410101315.9
申请日:2024-01-24
Applicant: 北京林业大学
IPC: G06V40/20 , G06V10/774 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0495 , G06N3/09
Abstract: 本发明公开了一种真实场景下野生动物姿态估计方法,属于野生动物监测保护技术领域。本发明旨在对复杂环境下的动物姿态进行估计,能够适用于大部分真实场景,有效避免了对数据集的重复训练,具体包括:S1、构建动物姿态估计图像的数据集,并基于风格迁移对所构建的数据集进行处理;S2、基于组白化操作,构建基于热图生成的自由简单基线姿态估计模型,利用所述模型生成热图,利用热图完成模型训练;S3、对模型进行修正,设计坐标表征方法和热图解码方法;S4、采用轻量化的姿态估计网络解码架构,完成真实场景下野生动物姿态的估计。本发明以深度学习的野生动物姿态估计方法为主体,最终可以实现对复杂环境下野生动物的监测、调查和保护工作。
-
公开(公告)号:CN117912116A
公开(公告)日:2024-04-19
申请号:CN202410101315.9
申请日:2024-01-24
Applicant: 北京林业大学
IPC: G06V40/20 , G06V10/774 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/0495 , G06N3/09
Abstract: 本发明公开了一种真实场景下野生动物姿态估计方法,属于野生动物监测保护技术领域。本发明旨在对复杂环境下的动物姿态进行估计,能够适用于大部分真实场景,有效避免了对数据集的重复训练,具体包括:S1、构建动物姿态估计图像的数据集,并基于风格迁移对所构建的数据集进行处理;S2、基于组白化操作,构建基于热图生成的自由简单基线姿态估计模型,利用所述模型生成热图,利用热图完成模型训练;S3、对模型进行修正,设计坐标表征方法和热图解码方法;S4、采用轻量化的姿态估计网络解码架构,完成真实场景下野生动物姿态的估计。本发明以深度学习的野生动物姿态估计方法为主体,最终可以实现对复杂环境下野生动物的监测、调查和保护工作。
-