-
公开(公告)号:CN107229917A
公开(公告)日:2017-10-03
申请号:CN201710395719.3
申请日:2017-05-31
Applicant: 北京师范大学
Abstract: 本发明公开一种基于迭代聚类的多幅遥感影像共性显著目标检测方法,属于遥感影像处理领域。实施过程包括:1)计算多幅遥感影像的灰度共生矩阵,获得灰度共生矩阵的对比度、能量、熵、相关性四个参数,结合遥感影像的长度与宽度,计算超像素数目;2)根据超像素数目对遥感影像完成超像素分割并对分割结果进行K‑means聚类,计算类间显著性,得到影像的初始显著图;3)对所有初始显著图进行目标分割,将分割结果再次进行基于超像素的K‑means聚类并计算类间显著性,得到影像的最终显著图;4)利用阈值分割获得多幅遥感影像的共性显著目标。本发明在有效抑制背景干扰的同时可准确检测多幅遥感影像的共性显著目标,可用于环境监测、土地规划等多个领域。
-
公开(公告)号:CN103679661A
公开(公告)日:2014-03-26
申请号:CN201310724566.4
申请日:2013-12-25
Applicant: 北京师范大学
IPC: G06T5/00
Abstract: 本发明公开一种基于显著性分析的自适应遥感图像融合方法,属于遥感图像处理技术领域。实施过程包括:1)多光谱图像经IHS变换得到I、H、S分量;2)采用多尺度谱残差对全色遥感图像进行显著性分析得到显著区域和非显著区域;3)对显著区域采用基于加窗IHS变换的融合方法,非显著区域采用基于小波变换的融合方法;4)将得到的显著区域和非显著区域I分量合并,与多光谱图像的H、S分量经IHS逆变换得到融合图像。本发明通过基于显著性分析的自适应融合,对显著区域很好保留了空间分辨率与光谱信息,对非显著区域有效降低了光谱扭曲度,解决了遥感图像融合中不同区域对空间分辨率和光谱信息要求不同的问题,可用于环境监测、土地利用与农业调查等领域。
-
公开(公告)号:CN107229917B
公开(公告)日:2019-10-15
申请号:CN201710395719.3
申请日:2017-05-31
Applicant: 北京师范大学
Abstract: 本发明公开一种基于迭代聚类的多幅遥感影像共性显著目标检测方法,属于遥感影像处理领域。实施过程包括:1)计算多幅遥感影像的灰度共生矩阵,获得灰度共生矩阵的对比度、能量、熵、相关性四个参数,结合遥感影像的长度与宽度,计算超像素数目;2)根据超像素数目对遥感影像完成超像素分割并对分割结果进行K‑means聚类,计算类间显著性,得到影像的初始显著图;3)对所有初始显著图进行目标分割,将分割结果再次进行基于超像素的K‑means聚类并计算类间显著性,得到影像的最终显著图;4)利用阈值分割获得多幅遥感影像的共性显著目标。本发明在有效抑制背景干扰的同时可准确检测多幅遥感影像的共性显著目标,可用于环境监测、土地规划等多个领域。
-
公开(公告)号:CN103679661B
公开(公告)日:2016-09-28
申请号:CN201310724566.4
申请日:2013-12-25
Applicant: 北京师范大学
IPC: G06T5/00
Abstract: 本发明公开一种基于显著性分析的自适应遥感图像融合方法,属于遥感图像处理技术领域。实施过程包括:1)多光谱图像经IHS变换得到I、H、S分量;2)采用多尺度谱残差对全色遥感图像进行显著性分析得到显著区域和非显著区域;3)对显著区域采用基于加窗IHS变换的融合方法,非显著区域采用基于小波变换的融合方法;4)将得到的显著区域和非显著区域I分量合并,与多光谱图像的H、S分量经IHS逆变换得到融合图像。本发明通过基于显著性分析的自适应融合,对显著区域很好保留了空间分辨率与光谱信息,对非显著区域有效降低了光谱扭曲度,解决了遥感图像融合中不同区域对空间分辨率和光谱信息要求不同的问题,可用于环境监测、土地利用与农业调查等领域。
-
-
-