一种基于对抗网络和自注意力机制的无监督语义分割算法

    公开(公告)号:CN115346045A

    公开(公告)日:2022-11-15

    申请号:CN202210808548.3

    申请日:2022-07-11

    Abstract: 一种基于对抗网络和自注意力机制的无监督语义分割算法涉及人工智能、自动驾驶领域,实现对自动驾驶图像的准确分割,其包括以下步骤:步骤1、获得自动驾驶图像数据;步骤2、利用对抗生成网络得到原始图像的生成图像;步骤3、利用超像素图像分割算法对原始图像进行预分割;步骤4、将图像输入局部特征提取网络获得图像的局部特征;步骤5、将图像输入全局特征提取网络获得图像的全局特征;步骤6、将局部特征和全局特征相加,并经过一层卷积层和Softmax函数层得到图像的初步分割结果;步骤7、计算预分割结果与原始图像分割结果之间的互信息以及预分割结果与生成图像分割结果之间的互信息;步骤8、采用梯度下降法对分割模型进行训练得到图像分割结果。

    一种基于多尺度生成对抗网络的小样本高质量生成的方法

    公开(公告)号:CN115482434A

    公开(公告)日:2022-12-16

    申请号:CN202211132539.3

    申请日:2022-09-17

    Abstract: 一种基于多尺度生成对抗网络的小样本高质量生成的方法属于计算机视觉领域,研究了一种针对可以在小样本数据集上生成高分辨率图像的方法。首先利用基于全卷积神经网络构建的生成器,得到生成图像。然后利用基于全卷积神经网络构建的判别器,在隐式上对于图像进行增广,分别对生成图片和真实图像计算距离指标。生成器和判别器组成单层尺度下的图像生成模型。利用图像生成模型构建多层尺度结构,从低到高处理图像的尺寸逐步增大。最后逐层进行动态博弈实现生成图像分布向真实图像分布拟合。本发明解决了小样本的数据集少和生成图像清晰度不够的问题。

Patent Agency Ranking